Skip to main content

Neutrophil Inflammation in COPD

  • Chapter
  • First Online:
Smoking and Lung Inflammation

Abstract

COPD is a disease of chronic inflammation which persists in patients after smoking cessation and intensifies as the disease progresses [1–3]. Patients with COPD, particularly those at risk for more frequent or severe exacerbations, exhibit an exaggerated innate immune response associated with elevated levels of inflammatory mediators and evidence of oxidative stress [1, 4–7]. Lung inflammation plays a key role in the pathophysiology of COPD and affects the airways, lung parenchyma, and pulmonary vasculature. Inflammation is not limited to the lung compartment. Systemic inflammation is an established feature of COPD, often accompanied by inflammation in the heart, blood vessels, and skeletal muscle which contribute significantly to disease morbidity and mortality [6, 8–10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brusselle GG, Joos GF, Bracke KR (2011) New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378(9795):1015–1026

    PubMed  CAS  Google Scholar 

  2. Hogg JC (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653

    PubMed  CAS  Google Scholar 

  3. Gorska K, Maskey-Warzechowska M, Krenke R (2010) Airway inflammation in chronic obstructive pulmonary disease. Curr Opin Pulm Med 16(2):89–96

    PubMed  Google Scholar 

  4. Barnes PJ (2008) Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 8(3):183–192

    PubMed  CAS  Google Scholar 

  5. Kim V, Rogers TJ, Criner GJ (2007) Frontiers in emphysema research. Semin Thorac Cardiovasc Surg 19(2):135–141

    PubMed  CAS  Google Scholar 

  6. Chung KF, Adcock IM (2008) Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 31(6):1334–1356

    PubMed  CAS  Google Scholar 

  7. Tzortzaki EG, Lambiri I, Vlachaki E, Siafakas NM (2007) Biomarkers in COPD. Curr Med Chem 14(9):1037–1048

    PubMed  CAS  Google Scholar 

  8. Oudijk EJD, Nijhuis EHJ, Zwank MD, van de Graaf EA, Mager HJ, Coffer PJ et al (2005) Systemic inflammation in COPD visualised by gene profiling in peripheral blood neutrophils. Thorax 60(7):538–544

    PubMed  Google Scholar 

  9. Yamagata T, Sugiura H, Yokoyama T, Yanagisawa S, Ichikawa T, Ueshima K et al (2007) Overexpression of CD-11b and CXCR1 on Circulating Neutrophils*. Chest 132(3): 890–899

    PubMed  CAS  Google Scholar 

  10. Quint JK, Wedzicha JA (2007) The neutrophil in chronic obstructive pulmonary disease. J Allergy Clin Immunol 119(5):1065–1071

    PubMed  CAS  Google Scholar 

  11. Keatings VM, Collins PD, Scott DM, Barnes PJ (1996) Differences in interleukin-8 and tumor necrosis factor-[alpha] in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153:530–534

    PubMed  CAS  Google Scholar 

  12. Koller B, Bals R, Roos D, Korting HC, Griese M, Hartl D (2009) Innate immune receptors on neutrophils and their role in chronic lung disease. Eur J Clin Invest 39(7):535–547

    PubMed  CAS  Google Scholar 

  13. Overbeek S, Braber S, Henricks P, Kleinjan M, Kamp V, Georgiou N et al (2011) Cigarette smoke induces beta2-integrin-dependent neutrophil migration across human endothelium. Respir Res 12(1):75

    PubMed  CAS  Google Scholar 

  14. Stockley RA (2002) Neutrophils and the pathogenesis of COPD*. Chest 121(5 suppl): 151S–155S

    PubMed  CAS  Google Scholar 

  15. Leitch AE, Duffin R, Haslett C, Rossi AG (2008) Relevance of granulocyte apoptosis to resolution of inflammation at the respiratory mucosa. Mucosal Immunol 1(5):350–363

    PubMed  CAS  Google Scholar 

  16. Saetta M, Turato G, Facchini FM, Corbino L, Lucchini RE, Casoni G et al (1997) Inflammatory cells in the bronchial glands of smokers with chronic bronchitis. Am J Respir Crit Care Med 156(5):1633–1639

    PubMed  CAS  Google Scholar 

  17. Stanescu D, Sanna A, Veriter C, Kostianev S, Calcagni PG, Fabbri LM et al (1996) Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax 51(3):267–271

    PubMed  CAS  Google Scholar 

  18. Curtis JL, Freeman CM, Hogg JC (2007) The immunopathogenesis of chronic obstructive pulmonary disease: insights from recent research. Proc Am Thorac Soc 4(7):512–521

    PubMed  CAS  Google Scholar 

  19. O’Donnell RA, Peebles C, Ward JA, Daraker A, Angco G, Broberg P et al (2004) Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD. Thorax 59(10):837–842

    PubMed  Google Scholar 

  20. Cowburn AS, Condliffe AM, Farahi N, Summers C, Chilvers ER (2008) Advances in neutrophil biology. Chest 134(3):606–612

    PubMed  CAS  Google Scholar 

  21. Qiu Y, Zhu J, Bandi V, Atmar RL, Hattotuwa K, Guntupalli KK et al (2003) Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 168(8):968–975

    PubMed  Google Scholar 

  22. Papi A, Bellettato CM, Braccioni F, Romagnoli M, Casolari P, Caramori G et al (2006) Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med 173(10):1114–1121

    PubMed  Google Scholar 

  23. Brown V, Elborn JS, Bradley J, Ennis M (2009) Dysregulated apoptosis and NFkappaB expression in COPD subjects. Respir Res 10(1):24

    PubMed  Google Scholar 

  24. Koller B, Kappler M, Latzin P, Gaggar A, Schreiner M, Takyar S et al (2008) TLR expression on neutrophils at the pulmonary site of infection: TLR1/TLR2-mediated up-regulation of TLR5 expression in cystic fibrosis lung disease. J Immunol 181(4):2753–2763

    PubMed  CAS  Google Scholar 

  25. Simpson JL, Phipps S, Gibson PG (2009) Inflammatory mechanisms and treatment of obstructive airway diseases with neutrophilic bronchitis. Pharmacol Ther 124(1):86–95

    PubMed  CAS  Google Scholar 

  26. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG (2010) Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2(3):216–227

    PubMed  CAS  Google Scholar 

  27. Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12(11):1035–1044

    PubMed  CAS  Google Scholar 

  28. Eyles JL, Roberts AW, Metcalf D, Wicks IP (2006) Granulocyte colony-stimulating factor and neutrophils-forgotten mediators of inflammatory disease. Nat Clin Pract Rheumatol 2(9):500–510

    PubMed  CAS  Google Scholar 

  29. Akgul C, Moulding DA, Edwards SW (2001) Molecular control of neutrophil apoptosis. FEBS Lett 487(3):318–322

    PubMed  CAS  Google Scholar 

  30. Mannino DM, Watt G, Hole D, Gillis C, Hart C, McConnachie A et al (2006) The natural history of chronic obstructive pulmonary disease. Eur Respir J 27(3):627–643

    PubMed  CAS  Google Scholar 

  31. Terashima T, Klut ME, English D, Hards J, Hogg JC, van Eeden SF (1999) Cigarette smoking causes sequestration of polymorphonuclear leukocytes released from the bone marrow in lung microvessels. Am J Respir Cell Mol Biol 20(1):171–177

    PubMed  CAS  Google Scholar 

  32. Sinden NJ, Stockley RA (2010) Systemic inflammation and comorbidity in COPD: a result of “overspill” of inflammatory mediators from the lungs? Review of the evidence. Thorax 65(10):930–936

    PubMed  Google Scholar 

  33. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327

    PubMed  CAS  Google Scholar 

  34. Borregaard N (2010) Neutrophils, from Marrow to Microbes. Immunity 33(5):657–670

    PubMed  CAS  Google Scholar 

  35. Chaudhuri R, McSharry C, Brady J, Donnelly I, Grierson C, McGuinness S et al (2012) Sputum matrix metalloproteinase-12 in patients with chronic obstructive pulmonary disease and asthma: relationship to disease severity. J Allergy Clin Immunol 129(3):655–663

    PubMed  CAS  Google Scholar 

  36. Demedts IK, Brusselle GG, Bracke KR, Vermaelen KY, Pauwels RA (2005) Matrix metalloproteinases in asthma and COPD. Curr Opin Pharmacol 5(3):257–263

    PubMed  CAS  Google Scholar 

  37. Barnes PJ, Rennard SI (2009) Chapter 34 – Pathophysiology of COPD. Asthma and COPD, 2nd edn. Academic Press, Oxford, pp 425–442

    Google Scholar 

  38. Owen CA (2008) Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 3(2):253–268

    PubMed  CAS  Google Scholar 

  39. Bartoli ML, Di Franco A, Vagaggini B, Bacci E, Cianchetti S, Dente FL et al (2009) Biological markers in induced sputum of patients with different phenotypes of chronic airway obstruction. Respiration 77(3):265–272

    PubMed  Google Scholar 

  40. Lapperre TS, Willems LNA, Timens W, Rabe KF, Hiemstra PS, Postma DS et al (2007) Small airways dysfunction and neutrophilic inflammation in bronchial biopsies and BAL in COPD*. Chest 131(1):53–59

    PubMed  Google Scholar 

  41. Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK et al (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109(5):661–670

    PubMed  CAS  Google Scholar 

  42. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F (2010) Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 62(4):726–759

    PubMed  CAS  Google Scholar 

  43. Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS et al (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12(3):317–323

    PubMed  CAS  Google Scholar 

  44. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4(8):617–629

    PubMed  CAS  Google Scholar 

  45. Baines KJ, Simpson JL, Gibson PG (2011) Innate immune responses are increased in chronic obstructive pulmonary disease. PLoS One 6(3):e18426

    PubMed  CAS  Google Scholar 

  46. Sadik CD, Kim ND, Luster AD (2011) Neutrophils cascading their way to inflammation. Trends Immunol 32(10):452–460

    PubMed  CAS  Google Scholar 

  47. Williams MR, Azcutia V, Newton G, Alcaide P, Luscinskas FW (2011) Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol 32(10):461–469

    PubMed  CAS  Google Scholar 

  48. Ferhani N, Letuve S, Kozhich A, Thibaudeau O, Grandsaigne M, Maret M et al (2010) Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181(9):917–927

    PubMed  CAS  Google Scholar 

  49. Lommatzsch M, Cicko S, Muller T, Lucattelli M, Bratke K, Stoll P et al (2010) Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181(9):928–934

    PubMed  CAS  Google Scholar 

  50. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17(1):1–14

    PubMed  CAS  Google Scholar 

  51. Prince LR, Whyte MK, Sabroe I, Parker LC (2011) The role of TLRs in neutrophil activation. Curr Opin Pharmacol 11(4):397–403

    PubMed  CAS  Google Scholar 

  52. Opitz B, van Laak V, Eitel J, Suttorp N (2010) Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med 181(12):1294–1309

    PubMed  CAS  Google Scholar 

  53. Xiang M, Fan J (2010) Pattern recognition receptor-dependent mechanisms of acute lung injury. Mol Med 16(1–2):69–82

    PubMed  CAS  Google Scholar 

  54. Christman JW, Sadikot RT, Blackwell TS (2000) The role of nuclear factor-kappa B in pulmonary diseases. Chest 117(5):1482–1487

    PubMed  CAS  Google Scholar 

  55. Sapey E, Ahmad A, Bayley D, Newbold P, Snell N, Rugman P et al (2009) Imbalances between interleukin-1 and tumor necrosis factor agonists and antagonists in stable COPD. J Clin Immunol 29(4):508–516

    PubMed  CAS  Google Scholar 

  56. Mortaz E, Adcock IM, Ito K, Kraneveld AD, Nijkamp FP, Folkerts G (2010) Cigarette smoke induces CXCL8 production by human neutrophils via activation of TLR9 receptor. Eur Respir J 36(5):1143–1154

    PubMed  CAS  Google Scholar 

  57. Pace E, Giarratano A, Ferraro M, Bruno A, Siena L, Mangione S et al (2011) TLR4 upregulation underpins airway neutrophilia in smokers with chronic obstructive pulmonary disease and acute respiratory failure. Hum Immunol 72(1):54–62

    PubMed  CAS  Google Scholar 

  58. Traves SL, Culpitt SV, Russell REK, Barnes PJ, Donnelly LE (2002) Increased levels of the chemokines GROα and MCP-1 in sputum samples from patients with COPD. Thorax 57(7):590–595

    PubMed  CAS  Google Scholar 

  59. Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K et al (1997) Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest J 112(2):505–510

    CAS  Google Scholar 

  60. Tanino M, Betsuyaku T, Takeyabu K, Tanino Y, Yamaguchi E, Miyamoto K et al (2002) Increased levels of interleukin-8 in BAL fluid from smokers susceptible to pulmonary emphysema. Thorax 57(5):405–411

    PubMed  CAS  Google Scholar 

  61. Hartl D, Latzin P, Hordijk P, Marcos V, Rudolph C, Woischnik M et al (2007) Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 13(12):1423–1430

    PubMed  CAS  Google Scholar 

  62. Jones SA, Wolf M, Qin S, Mackay CR, Baggiolini M (1996) Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc Natl Acad Sci 93(13):6682–6686

    PubMed  CAS  Google Scholar 

  63. Sabroe I, Whyte MKB (2007) Incapacitating the immune system in cystic fibrosis. Nat Med 13(12):1417–1418

    PubMed  CAS  Google Scholar 

  64. Braber S, Koelink PJ, Henricks PAJ, Jackson PL, Nijkamp FP, Garssen J et al (2011) Cigarette smoke-induced lung emphysema in mice is associated with prolyl endopeptidase, an enzyme involved in collagen breakdown. Am J Physiol Lung Cell Mol Physiol 300(2):L255–L265

    PubMed  CAS  Google Scholar 

  65. Snelgrove RJ, Jackson PL, Hardison MT, Noerager BD, Kinloch A, Gaggar A et al (2010) A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science 330(6000):90–94

    PubMed  CAS  Google Scholar 

  66. O’Reilly P, Jackson P, Noerager B, Parker S, Dransfield M, Gaggar A et al (2009) N-alpha-PGP and PGP, potential biomarkers and therapeutic targets for COPD. Respir Res 10(1):38

    PubMed  Google Scholar 

  67. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531

    PubMed  CAS  Google Scholar 

  68. de Kruijf P, Lim HD, Overbeek SA, Zaman GJR, Kraneveld AD, Folkerts G et al (2010) The collagen-breakdown product N-acetyl-Proline-Glycine-Proline (N-α-PGP) does not interact directly with human CXCR1 and CXCR2. Eur J Pharmacol 643(1):29–33

    PubMed  Google Scholar 

  69. Orfanos SE, Mavrommati I, Korovesi I, Roussos C (2004) Pulmonary endothelium in acute lung injury: from basic science to the critically ill. Intensive Care Med 30(9):1702–1714

    PubMed  CAS  Google Scholar 

  70. Basit A, Reutershan J, Morris MA, Solga M, Rose CE Jr, Ley K (2006) ICAM-1 and LFA-1 play critical roles in LPS-induced neutrophil recruitment into the alveolar space. Am J Physiol Lung Cell Mol Physiol 291(2):L200–L207

    PubMed  CAS  Google Scholar 

  71. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    PubMed  CAS  Google Scholar 

  72. Hillyer P, Mordelet E, Flynn G, Male D (2003) Chemokines, chemokine receptors and adhesion molecules on different human endothelia: discriminating the tissue-specific functions that affect leucocyte migration. Clin Exp Immunol 134(3):431–441

    PubMed  CAS  Google Scholar 

  73. Burns AR, Smith CW, Walker DC (2003) Unique structural features that influence neutrophil emigration into the lung. Physiol Rev 83(2):309–336

    PubMed  CAS  Google Scholar 

  74. Reutershan J, Ley K (2004) Bench-to-bedside review: acute respiratory distress syndrome – how neutrophils migrate into the lung. Crit Care 8(6):453–461

    PubMed  Google Scholar 

  75. Doerschuk CM (2001) Mechanisms of Leukocyte Sequestration in Inflamed Lungs. Microcirculation 8(2):71

    PubMed  CAS  Google Scholar 

  76. Kitagawa Y, Van Eeden SF, Redenbach DM, Daya M, Walker BAM, Klut ME et al (1997) Effect of mechanical deformation on structure and function of polymorphonuclear leukocytes. J Appl Physiol 82(5):1397–1405

    PubMed  CAS  Google Scholar 

  77. Mizgerd JP (2002) Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Semin Immunol 14(2):123–132

    PubMed  CAS  Google Scholar 

  78. Gane J, Stockley R (2012) Mechanisms of neutrophil transmigration across the vascular endothelium in COPD. Thorax 67(6):553–561

    PubMed  Google Scholar 

  79. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31(8):318–324

    PubMed  CAS  Google Scholar 

  80. Doerschuk CM, Tasaka S, Wang Q (2000) CD11/CD18-dependent and -independent neutrophil emigration in the lungs: how do neutrophils know which route to take? Am J Respir Cell Mol Biol 23(2):133–136

    PubMed  CAS  Google Scholar 

  81. Bowden RA, Ding Z-M, Donnachie EM, Petersen TK, Michael LH, Ballantyne CM et al (2002) Role of {alpha}4 integrin and VCAM-1 in CD18-independent neutrophil migration across mouse cardiac endothelium. Circ Res 90(5):562–569

    PubMed  CAS  Google Scholar 

  82. Kadioglu A, De Filippo K, Bangert M, Fernandes VE, Richards L, Jones K et al (2011) The integrins Mac-1 and α4β1 perform crucial roles in neutrophil and T cell recruitment to lungs during Streptococcus pneumoniae infection. J Immunol 186(10):5907–5915

    PubMed  CAS  Google Scholar 

  83. Pignatti P, Moscato G, Casarini S, Delmastro M, Poppa M, Brunetti G et al (2005) Downmodulation of CXCL8/IL-8 receptors on neutrophils after recruitment in the airways. J Allergy Clin Immunol 115(1):88–94

    PubMed  CAS  Google Scholar 

  84. Noguera A, Busquets X, Sauleda J, Villaverde JM, MacNee W, Agusti AG (1998) Expression of adhesion molecules and G proteins in circulating neutrophils in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158(5):1664–1668

    PubMed  CAS  Google Scholar 

  85. Noguera A, Batle S, Miralles C, Iglesias J, Busquets X, MacNee W et al (2001) Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax 56(6):432–437

    PubMed  CAS  Google Scholar 

  86. Grommes J, Soehnlein O (2011) Contribution of neutrophils to acute lung injury. Mol Med 17(3–4):293–307

    PubMed  CAS  Google Scholar 

  87. Chin AC, Parkos CA (2007) Pathobiology of neutrophil transepithelial migration: implications in mediating epithelial injury. Annu Rev Pathol: Mech Dis 2(1):111–143

    CAS  Google Scholar 

  88. Zemans RL, Colgan SP, Downey GP (2009) Transepithelial migration of neutrophils. Am J Respir Cell Mol Biol 40(5):519–535

    PubMed  CAS  Google Scholar 

  89. El-Benna J, Dang PM, Gougerot-Pocidalo MA, Elbim C (2005) Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz) 53(3):199–206

    CAS  Google Scholar 

  90. Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397(2):342–344

    PubMed  CAS  Google Scholar 

  91. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182

    PubMed  CAS  Google Scholar 

  92. Kirkham P, Rahman I (2006) Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther 111(2):476–494

    PubMed  CAS  Google Scholar 

  93. Rahman I, Biswas SK, Kode A (2006) Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 533:222–239

    PubMed  CAS  Google Scholar 

  94. Coldren CD, Nick JA, Poch KR, Woolum MD, Fouty BW, O’Brien JM et al (2006) Functional and genomic changes induced by alveolar transmigration in human neutrophils. Am J Physiol Lung Cell Mol Physiol 291(6):L1267–L1276

    PubMed  CAS  Google Scholar 

  95. Hill ME, Bird IN, Daniels RH, Elmore MA, Finnen MJ (1994) Endothelial cell-associated platelet-activating factor primes neutrophils for enhanced superoxide production and arachidonic acid release during adhesion to but not transmigration across IL-1 beta-treated endothelial monolayers. J Immunol 153(8):3673–3683

    PubMed  CAS  Google Scholar 

  96. Fabbri LM, Luppi F, Beghe B, Rabe KF (2011) The multiple components of COPD. In: Hanania NA, Sharafkhaneh A (eds) COPD: A guide to diagnosis and clinical management. Humana Press, New York, pp 1–20

    Google Scholar 

  97. MacNee W, Rahman I (2001) Is oxidative stress central to the pathogenesis of chronic obstructive pulmonary disease? Trends Mol Med 7(2):55–62

    PubMed  CAS  Google Scholar 

  98. Lögters T, Margraf S, Altrichter J, Cinatl J, Mitzner S, Windolf J et al (2009) The clinical value of neutrophil extracellular traps. Med Microbiol Immunol 198(4):211–219 (Berl)

    PubMed  Google Scholar 

  99. Ma AC, Kubes P (2008) Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 6(3):415–420

    PubMed  CAS  Google Scholar 

  100. Whyte M, Renshaw S, Lawson R, Bingle C (1999) Apoptosis and the regulation of neutrophil lifespan. Biochem Soc Trans 27(6):802–807

    PubMed  CAS  Google Scholar 

  101. Dransfield I, Rossi AG, Brown SB, Hart SP (2005) Neutrophils: dead or effete? Cell surface phenotype and implications for phagocytic clearance. Cell Death Differ 12(11):1363–1367

    PubMed  CAS  Google Scholar 

  102. Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2(12):965–975

    PubMed  CAS  Google Scholar 

  103. Scannell M, Flanagan MB, deStefani A, Wynne KJ, Cagney G, Godson C et al (2007) Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J Immunol 178(7):4595–4605

    PubMed  CAS  Google Scholar 

  104. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8(4):279–289

    PubMed  CAS  Google Scholar 

  105. Ward C, Chilvers ER, Lawson MF, Pryde JG, Fujihara S, Farrow SN et al (1999) NF-kappaB activation is a critical regulator of human granulocyte apoptosis in vitro. J Biol Chem 274(7):4309–4318

    PubMed  CAS  Google Scholar 

  106. Kilpatrick LE, Lee JY, Haines KM, Campbell DE, Sullivan KE, Korchak HM (2002) A role for PKC-delta and PI 3-kinase in TNF-alpha-mediated antiapoptotic signaling in the human neutrophil. Am J Physiol Cell Physiol 283(1):C48–C57

    PubMed  CAS  Google Scholar 

  107. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80(8): 2012–2020

    PubMed  CAS  Google Scholar 

  108. Lee A, Whyte MK, Haslett C (1993) Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol 54(4):283–288

    PubMed  CAS  Google Scholar 

  109. Klein JB, Buridi A, Coxon PY, Rane MJ, Manning T, Kettritz R et al (2001) Role of extracellular signal-regulated kinase and phosphatidylinositol-3 kinase in chemoattractant and LPS delay of constitutive neutrophil apoptosis. Cell Signal 13(5):335–343

    PubMed  CAS  Google Scholar 

  110. Kilpatrick LE, Sun S, Mackie D, Baik F, Li H, Korchak HM (2006) Regulation of TNF mediated antiapoptotic signaling in human neutrophils: role of {delta}-PKC and ERK1/2. J Leukoc Biol 80:1512–1521

    PubMed  CAS  Google Scholar 

  111. Yan SR, Sapru K, Issekutz AC (2004) The CD11/CD18 (beta2) integrins modulate neutrophil caspase activation and survival following TNF-alpha or endotoxin induced transendothelial migration. Immunol Cell Biol 82(4):435–446

    PubMed  CAS  Google Scholar 

  112. Mayadas TN, Cullere X (2005) Neutrophil beta2 integrins: moderators of life or death decisions. Trends Immunol 26(7):388–395

    PubMed  CAS  Google Scholar 

  113. Watson RW, Rotstein OD, Nathens AB, Parodo J, Marshall JC (1997) Neutrophil apoptosis is modulated by endothelial transmigration and adhesion molecule engagement. J Immunol 158(2):945–953

    PubMed  CAS  Google Scholar 

  114. Rytila P, Plataki M, Bucchieri F, Uddin M, Nong G, Kinnula VL et al (2006) Airway neutrophilia in COPD is not associated with increased neutrophil survival. Eur Respir J 28(6): 1163–1169

    PubMed  CAS  Google Scholar 

  115. Pletz MWR, Ioanas M, de Roux A, Burkhardt O, Lode H (2004) Reduced spontaneous apoptosis in peripheral blood neutrophils during exacerbation of COPD. Eur Respir J 23(4): 532–537

    PubMed  CAS  Google Scholar 

  116. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25(1):101–137

    PubMed  CAS  Google Scholar 

  117. Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN, Suzuki F (2004) Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21(2):215–226

    PubMed  CAS  Google Scholar 

  118. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-[beta]: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194

    PubMed  CAS  Google Scholar 

  119. Hartl D, Krauss-Etschmann S, Koller B, Hordijk PL, Kuijpers TW, Hoffmann F et al (2008) Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J Immunol 181(11):8053–8067

    PubMed  CAS  Google Scholar 

  120. Wouters EFM, Reynaert NL, Dentener MA, Vernooy JHJ (2009) Systemic and local inflammation in asthma and chronic obstructive pulmonary disease: is there a connection? Proc Am Thorac Soc 6(8):638–647

    PubMed  CAS  Google Scholar 

  121. Groenewegen KH, Postma DS, Hop WCJ, Wielders PLML, Schlösser NJJ, Wouters EFM (2008) Increased systemic inflammation is a risk factor for COPD exacerbations*. Chest J 133(2):350–357

    CAS  Google Scholar 

  122. Barnes PJ, Celli BR (2009) Systemic manifestations and comorbidities of COPD. Eur Respir J 33(5):1165–1185

    PubMed  CAS  Google Scholar 

  123. Donaldson GC, Seemungal TAR, Patel IS, Bhowmik A, Wilkinson TMA, Hurst JR et al (2005) Airway and systemic inflammation and decline in lung function in patients with COPD*. Chest J 128(4):1995–2004

    Google Scholar 

  124. Barnes PJ (2008) The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 118(11):3546–3556

    PubMed  CAS  Google Scholar 

  125. Nicholson GC, Tennant RC, Carpenter DC, Sarau HM, Kon OM, Barnes PJ et al (2007) A novel flow cytometric assay of human whole blood neutrophil and monocyte CD11b levels: upregulation by chemokines is related to receptor expression, comparison with neutrophil shape change, and effects of a chemokine receptor (CXCR2) antagonist. Pulm Pharmacol Ther 20(1):52–59

    PubMed  CAS  Google Scholar 

  126. Sapey E, Stockley JA, Greenwood H, Ahmad A, Bayley D, Lord JM et al (2011) Behavioral and structural differences in migrating peripheral neutrophils from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 183(9):1176–1186

    PubMed  Google Scholar 

  127. Burnett D, Hill S, Chamba A, Stockley R (1987) Neutrophils from subjects with chronic obstructive lung disease show enhanced chemotaxis and extracellular proteolysis. Lancet 330(8567):1043–1046

    Google Scholar 

  128. Gompertz S, Bayley DL, Hill SL, Stockley RA (2001) Relationship between airway inflammation and the frequency of exacerbations in patients with smoking related COPD. Thorax 56(1):36–41

    PubMed  CAS  Google Scholar 

  129. Pauwels NS, Bracke KR, Dupont LL, Van Pottelberge GR, Provoost S, Vanden Berghe T et al (2011) Role of IL-1α and the Nlrp3/caspase-1/IL-1β axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur Respir J 38(5):1019–1028

    PubMed  CAS  Google Scholar 

  130. Profita M, Chiappara G, Mirabella F, Di Giorgi R, Chimenti L, Costanzo G et al (2003) Effect of cilomilast (Ariflo) on TNF-α, IL-8, and GM-CSF release by airway cells of patients with COPD. Thorax 58(7):573–579

    PubMed  CAS  Google Scholar 

  131. Sapey E, Stockley RA (2006) COPD exacerbations 2: Aetiology. Thorax 61(3):250–258

    PubMed  CAS  Google Scholar 

  132. Mannino DM (2007) Understanding COPD hospitalizations the devil is always in the details! Chest J 132(6):1731–1732

    Google Scholar 

  133. Zvezdin B, Milutinov S, Kojicic M, Hadnadjev M, Hromis S, Markovic M et al (2009) A postmortem analysis of major causes of early death in patients hospitalized with COPD exacerbation. Chest J 136(2):376–380

    Google Scholar 

  134. Brown DW, Croft JB, Greenlund KJ, Giles WH (2010) Trends in hospitalization with chronic obstructive pulmonary disease – United States, 1990–2005. COPD: J Chron Obstruct Pulmon Dis 7(1):59–62

    Google Scholar 

  135. Seemungal TAR, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA (1998) Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157(5):1418–1422

    PubMed  CAS  Google Scholar 

  136. George RB (1999) Course and prognosis of chronic obstructive pulmonary disease. Am J Med Sci 318(2):103

    PubMed  CAS  Google Scholar 

  137. Donaldson GC, Seemungal TAR, Bhowmik A, Wedzicha JA (2002) Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 57(10):847–852

    PubMed  CAS  Google Scholar 

  138. Seemungal T, Harper-Owen R, Bhowmik A, Jeffries D, Wedzicha J (2000) Detection of rhinovirus in induced sputum at exacerbation of chronic obstructive pulmonary disease. Eur Respir J 16(4):677–683

    PubMed  CAS  Google Scholar 

  139. Hill AT, Campbell EJ, Hill SL, Bayley DL, Stockley RA (2000) Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am J Med 109(4):288–295

    PubMed  CAS  Google Scholar 

  140. Celli BR, Barnes PJ (2007) Exacerbations of chronic obstructive pulmonary disease. Eur Respir J 29:1224–1238

    PubMed  CAS  Google Scholar 

  141. Aaron SD, Angel JB, Lunau M, Wright K, Fex C, Le Saux N et al (2001) Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163(2):349–355

    PubMed  CAS  Google Scholar 

  142. Stockley RA, O’Brien C, Pye A, Hill SL (2000) Relationship of sputum color to nature and outpatient management of acute exacerbations of COPD*. Chest J 117(6):1638–1645

    CAS  Google Scholar 

  143. Stockley RA (2004) Chronic obstructive pulmonary disease, neutrophils and bacteria: from science to integrated care pathways. Clin Med, J Roy Coll Physic 4(6):567–572

    CAS  Google Scholar 

  144. Patel IS, Seemungal TAR, Wilks M, Lloyd-Owen SJ, Donaldson GC, Wedzicha JA (2002) Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 57(9):759–764

    PubMed  CAS  Google Scholar 

  145. Bhowmik A, Seemungal TAR, Sapsford RJ, Wedzicha JA (2000) Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax 55(2):114–120

    PubMed  CAS  Google Scholar 

  146. Molfino NA, Jeffery PK (2007) Chronic obstructive pulmonary disease: histopathology, inflammation and potential therapies. Pulm Pharmacol Ther 20(5):462–472

    PubMed  CAS  Google Scholar 

  147. Barnes PJ (2008) Frontrunners in novel pharmacotherapy of COPD. Curr Opin Pharmacol 8(3):300–307

    PubMed  CAS  Google Scholar 

  148. Keatings VM, Jatakanon A, Worsdell YM, Barnes PJ (1997) Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD. Am J Respir Crit Care Med 155(2):542–548

    PubMed  CAS  Google Scholar 

  149. Culpitt SV, Maziak W, Loukidis S, Nightingale JA, Matthews JL, Barnes PJ (1999) Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160(5):1635–1639

    PubMed  CAS  Google Scholar 

  150. Burgos RA, Hidalgo MA, Figueroa CD, Conejeros I, Hancke JL (2009) New potential targets to modulate neutrophil function in inflammation. Mini Rev Med Chem 9(2):153–168

    PubMed  CAS  Google Scholar 

  151. Barnes PJ (2007) New molecular targets for the treatment of neutrophilic diseases. J Allergy Clin Immunol 119(5):1055–1062

    PubMed  CAS  Google Scholar 

  152. Mahler DA, Huang S, Tabrizi M, Bell GM (2004) Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest J 126(3):926–934

    CAS  Google Scholar 

  153. Rennard SI, Fogarty C, Kelsen S, Long W, Ramsdell J, Allison J et al (2007) The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 175(9):926–934

    PubMed  CAS  Google Scholar 

  154. Gompertz S, Stockley RA (2002) A randomized, placebo-controlled trial of a leukotriene synthesis inhibitor in patients with COPD*. Chest J 122(1):289–294

    CAS  Google Scholar 

  155. Gonsiorek W, Fan X, Hesk D, Fossetta J, Qiu H, Jakway J et al (2007) Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist. J Pharmacol Exp Ther 322(2):477–485

    PubMed  CAS  Google Scholar 

  156. Gordon JR, Li F, Zhang X, Wang W, Zhao X, Nayyar A (2005) The combined CXCR1/CXCR2 antagonist CXCL8(3–74)K11R/G31P blocks neutrophil infiltration, pyrexia, and pulmonary vascular pathology in endotoxemic animals. J Leukoc Biol 78(6):1265–1272

    PubMed  CAS  Google Scholar 

  157. Holz O, Khalilieh S, Ludwig-Sengpiel A, Watz H, Stryszak P, Soni P et al (2010) SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur Respir J 35(3):564–570

    PubMed  CAS  Google Scholar 

  158. Odegaard JI, Chawla A (2011) Alternative macrophage activation and metabolism. Ann Rev Pathol: Mech Dis 6(1):275–297

    CAS  Google Scholar 

  159. Greenwood J, Steinman L, Zamvil SS (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6(5):358–370

    PubMed  CAS  Google Scholar 

  160. Roche N, Marthan R, Berger P, Chambellan A, Chanez P, Aguilaniu B et al (2011) Beyond corticosteroids: future prospects in the management of inflammation in COPD. Eur Respir Rev 20(121):175–182

    PubMed  CAS  Google Scholar 

  161. Mancini GBJ, Etminan M, Zhang B, Levesque LE, FitzGerald JM, Brophy JM (2006) Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. J Am Coll Cardiol 47(12):2554–2560

    PubMed  CAS  Google Scholar 

  162. Young RP, Hopkins R, Eaton TE (2009) Pharmacological actions of statins: potential utility in COPD. Eur Respir Rev 18(114):222–232

    PubMed  CAS  Google Scholar 

  163. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JAD, Criner GJ et al (2011) Azithromycin for prevention of exacerbations of COPD. N Engl J Med 365(8):689–698

    PubMed  CAS  Google Scholar 

  164. He ZY, Ou LM, Zhang JQ, Bai J, Liu GN, Li MH et al (2010) Effect of 6 months of erythromycin treatment on inflammatory cells in induced sputum and exacerbations in chronic obstructive pulmonary disease. Respiration 80(6):445–452

    PubMed  CAS  Google Scholar 

  165. Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M et al (2008) Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 178(2):139–148

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie E. Kilpatrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kennedy, P.A., Kilpatrick, L.E. (2013). Neutrophil Inflammation in COPD. In: Rogers, T., Criner, G., Cornwell, W. (eds) Smoking and Lung Inflammation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7351-0_3

Download citation

Publish with us

Policies and ethics