Skip to main content

From the Poincaré–Birkhoff Fixed Point Theorem to Linked Twist Maps: Some Applications to Planar Hamiltonian Systems

  • Conference paper
  • First Online:
Differential and Difference Equations with Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 47))

  • 1847 Accesses

Abstract

We present some results about fixed points and periodic points for planar maps which are motivated by the analysis of the twist maps occurring in the Poincaré–Birkhoff fixed point theorem and in the study of geometric configurations associated to the linked twist maps arising in some problems of chaotic fluid mixing. Applications are given to the existence and multiplicity of periodic solutions for some planar Hamiltonian systems and, in particular, to the second-order nonlinear equation \(\ddot{x} + f(t,x) = 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birkhoff, G.D.: Proof of Poincaré’s geometric theorem. Trans. Am. Math. Soc. 14, 14–22 (1913)

    MathSciNet  MATH  Google Scholar 

  2. Birkhoff, G.D.: Dynamical systems with two degrees of freedom. Trans. Am. Math. Soc. 18(2), 199–300 (1917)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G.D.: An extension of Poincaré’s last geometric theorem. Acta Math. 47, 297–311 (1925)

    Article  MathSciNet  Google Scholar 

  4. Birkhoff, G.D.: Dynamical Systems. American Mathematical Society, Providence (1927)

    MATH  Google Scholar 

  5. Brown, M., Neumann, W.D.: Proof of the Poincaré-Birkhoff fixed point theorem. Michigan Math. J. 24(1), 21–31 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buttazzoni, P., Fonda, A.: Periodic perturbations of scalar second order differential equations. Discrete Contin. Dynam. Syst. 3(3), 451–455 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dalbono, F., Rebelo, C.: Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems. Rend. Sem. Mat. Univ. Politec. Torino 60(4), 233–263 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Devaney, R.L.: Subshifts of finite type in linked twist mappings. Proc. Am. Math. Soc. 71(2), 334–338 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, W.Y.: A generalization of the Poincaré-Birkhoff theorem. Proc. Am. Math. Soc. 88(2), 341–346 (1983)

    MATH  Google Scholar 

  10. Ding, T.: Approaches to the qualitative theory of ordinary differential equations. In: Peking University Series in Mathematics, vol. 3. World Scientific Publishing Co. Pte. Ltd., Hackensack (2007)

    Google Scholar 

  11. Fonda, A., Sabatini, M., Zanolin, F.: Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré–Birkhoff Theorem. Topol. Methods Nonlinear Anal. 40(1), 29–52 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Hale, J.: Ordinary Differential Equations. Robert E. Krieger Publishing Co. Inc., Huntington (1980)

    MATH  Google Scholar 

  13. Henrard, M., Zanolin, F.: Bifurcation from a periodic orbit in perturbed planar Hamiltonian systems. J. Math. Anal. Appl. 277(1), 79–103 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Le Calvez, P., Wang, J.: Some remarks on the Poincaré-Birkhoff theorem. Proc. Am. Math. Soc. 138(2), 703–715 (2010)

    Article  MATH  Google Scholar 

  15. Margheri, A., Rebelo, C., Zanolin, F.: Chaos in periodically perturbed planar Hamiltonian systems using linked twist maps. J. Differ. Equ. 249(12), 3233–3257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martins, R., Ureña, A.J.: The star-shaped condition on Ding’s version of the Poincaré-Birkhoff theorem. Bull. Lond. Math. Soc. 39(5), 803–810 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Opial, Z.: Sur les périodes des solutions de l’équation différentielle \({x}^{{\prime\prime}} + g(x) = 0\). Ann. Polon. Math. 10, 49–72 (1961)

    MathSciNet  MATH  Google Scholar 

  18. Pascoletti, A., Pireddu, M., Zanolin, F.: Multiple periodic solutions and complex dynamics for second order ODEs via linked twist maps. In: The 8th Colloquium on the Qualitative Theory of Differential Equations, Proc. Colloq. Qual. Theory Differ. Equ., vol. 8, pp. No. 14, 32. Electron. J. Qual. Theory Differ. Equ., Szeged (2008)

    Google Scholar 

  19. Pascoletti, A., Zanolin, F.: Chaotic dynamics in periodically forced asymmetric ordinary differential equations. J. Math. Anal. Appl. 352(2), 890–906 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pascoletti, A., Zanolin, F.: A crossing lemma for annular regions and invariant sets. J. Math. (to appear)

    Google Scholar 

  21. Pascoletti, A., Zanolin, F.: A topological approach to bend-twist maps, with applications. Int. J. Differ. Equ. Art. ID 612041, 20 (2011)

    Google Scholar 

  22. Poincaré, H.: Sur un théorème de geométrie. Rend. Circ. Mat. Palermo 33, 375–389 (1912)

    Article  Google Scholar 

  23. Rebelo, C.: A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems. Nonlinear Anal. 29(3), 291–311 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Springham, J.: Ergodic properties of linked-twist maps. Ph.D. thesis, University of Bristol (2008). http://arxiv.org/abs/0812.0899v1

  25. Sturman, R., Ottino, J.M., Wiggins, S.: The mathematical foundations of mixing. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 22. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  26. Wiggins, S., Ottino, J.M.: Foundations of chaotic mixing. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1818), 937–970 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zanolin, F.: Time-maps and boundary value problems for ordinary differential equations. In: Tricomi’s ideas and contemporary applied mathematics (Rome/Turin, 1997), vol. 147, pp. 281–302. Atti Convegni Lincei, Accademia Nazionale dei Lincei, Rome (1998)

    Google Scholar 

Download references

Acknowledgements

The authors thank the referee for the careful checking of the manuscript and the pertinent remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Zanolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Pascoletti, A., Zanolin, F. (2013). From the Poincaré–Birkhoff Fixed Point Theorem to Linked Twist Maps: Some Applications to Planar Hamiltonian Systems. In: Pinelas, S., Chipot, M., Dosla, Z. (eds) Differential and Difference Equations with Applications. Springer Proceedings in Mathematics & Statistics, vol 47. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7333-6_14

Download citation

Publish with us

Policies and ethics