Oscillation Criteria for Delay and Advanced Difference Equations with Variable Arguments

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 47)

Abstract

Consider the first-order delay difference equation
$$\displaystyle{\Delta x(n) + p(n)x(\tau (n)) = 0\text{, }n \geq 0,}$$
and the first-order advanced difference equation
$$\displaystyle{\nabla x(n) - p(n)x(\mu (n)) = 0\text{,}n \geq 1\text{,}[\Delta x(n) - p(n)x(\nu (n)) = 0\text{,}n \geq 0],}$$
where \(\Delta \) denotes the forward difference operator \(\ \Delta x(n) = x(n + 1) - x(n)\), ∇ denotes the backward difference operator \(\nabla x(n) = x(n) - x(n - 1)\), \(\left \{p(n)\right \}\) is a sequence of nonnegative real numbers, \(\left \{\tau (n)\right \}\) is a sequence of positive integers such that τ(n) ≤ n − 1, for all n ≥ 0, and \(\left \{\mu (n)\right \}\)\(\left [\left \{\nu (n)\right \}\right ]\) is a sequence of positive integers such that
$$\displaystyle{\mu (n) \geq n + 1\text{ for all }n \geq 1\text{,}\left [\nu (n) \geq n + 2\text{ for all }n \geq 0\right ].}$$
The state of the art on the oscillation of all solutions to these equations is presented. Examples illustrating the results are given.

Keywords

Oscillation Delay Advanced difference equations 

References

  1. 1.
    Berezansky, L., Braverman, E., Pinelas, S.: On nonoscillation of mixed advanced-delay differential equations with positive and negative coefficients. Comput. Math. Appl. 58, 766–775 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chatzarakis, G.E., Stavroulakis, I.P.: Oscillations of first order linear delay difference equations. Aust. J. Math. Anal. Appl.3(1), 11 (2006) (Art.14)MathSciNetGoogle Scholar
  3. 3.
    Chatzarakis, G.E., Stavroulakis, I.P.: Oscillations of difference equations with general advanced argument. Cent. Eur. J. Math. 10(2), 807–823 (2012). DOI: 102478/s 11533-011-0137-5MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chatzarakis, G.E., Koplatadze, R., Stavroulakis, I.P.: Oscillation criteria of first order linear difference equations with delay argument. Nonlinear Anal. 68, 994–1005 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chatzarakis, G.E., Koplatadze, R., Stavroulakis, I.P.: Optimal oscillation criteria for first order difference equations with delay argument. Pacific J. Math. 235, 15–33 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chatzarakis, G.E., Philos, Ch.G., Stavroulakis, I.P.: On the oscillation of the solutions to linear difference equations with variable delay. Electron. J. Differ. Equ. 2008(50), 1–15 (2008)MathSciNetGoogle Scholar
  7. 7.
    Chatzarakis, G.E., Philos, Ch.G., Stavroulakis, I.P.: An oscillation criterion for linear difference equations with general delay argument. Port. Math. 66, 513–533 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, M.P., Yu, Y.S.: Oscillations of delay difference equations with variable coefficients. In: Elaydi, S.N., et al. (eds.) Proceedings of First International Conference on Difference Equations, pp. 105–114. Gordon and Breach (1995)Google Scholar
  9. 9.
    Cheng, S.S. Zhang, G.: “Virus” in several discrete oscillation theorems. Appl. Math. Lett. 13, 9–13 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dannan, F.M., Elaydi, S.N.: Asymptotic stability of linear difference equations of advanced type. J. Comput. Anal. Appl. 6, 173–187 (2004)MathSciNetMATHGoogle Scholar
  11. 11.
    Diblik, J.: Positive and oscillating solutions of differential equations with delay in critical case. J. Comput. Appl. Math. 88, 185–2002 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Domshlak, Y.: Discrete version of Sturmian Comparison Theorem for non-symmetric equations. Dokl. Azerb. Acad. Sci., 37, 12–15 (1981) (Russian)MathSciNetMATHGoogle Scholar
  13. 13.
    Domshlak, Y.: Sturmian comparison method in oscillation study for discrete difference equations, I. J. Differ. Int. Equ. 7, 571–582 (1994)MathSciNetMATHGoogle Scholar
  14. 14.
    Domshlak, Y.: Delay-difference equations with periodic coefficients: sharp results in oscillation theory. Math. Inequal. Appl. 1, 403–422 (1998)MathSciNetMATHGoogle Scholar
  15. 15.
    Domshlak, Y.: Riccati difference equations with almost periodic coefficients in the critical state. Dyn. Syst. Appl. 8, 389–399 (1999)MathSciNetMATHGoogle Scholar
  16. 16.
    Domshlak, Y.: What should be a discrete version of the Chanturia-Koplatadze Lemma? Funct. Differ. Equ. 6, 299–304 (1999)MathSciNetMATHGoogle Scholar
  17. 17.
    Domshlak, Y.: The Riccati difference equations near ”extremal” critical states. J. Differ. Equ. Appl. 6, 387–416 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Driver, R.D.: Can the future influence the present? Phys. Rev. D 19(3), 1098–1107 (1979)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Elbert, A., Stavroulakis, I.P.: Oscillations of first order differential equations with deviating arguments. In: Recent Trends in Differential Equations, pp. 163–178. World Sci. Ser. Appl. Anal. 1, World Science Publishing Co., Singapore (1992)CrossRefGoogle Scholar
  20. 20.
    Elbert, A., Stavroulakis, I.P.: Oscillation and non-oscillation criteria for delay differential equations. Proc. Am. Math. Soc.textbf123, 1503–1510 (1995)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Elsgolts, L.E.: Introduction to the Theory of Differential Equations with Deviating Arguments. (Translated from the Russian by R. J. McLaughlin) Holden-Day, Inc., San Francisco (1966)Google Scholar
  22. 22.
    Erbe, L.H., Kong, Q., Zhang, B.G.: Oscillation Theory for Functional Differential Equations. Dekker, New York (1995)Google Scholar
  23. 23.
    Erbe, L.H., Zhang, B.G.: Oscillation of discrete analogues of delay equations. Differ. Int. Equ. 2, 300–309 (1989)MathSciNetMATHGoogle Scholar
  24. 24.
    Fukagai, N., Kusano, T.: Oscillation theory of first order functional differential equations with deviating arguments. Ann. Mat. Pura Appl. 136, 95–117 (1984)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, Dordrecht (1992)CrossRefMATHGoogle Scholar
  26. 26.
    Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford (1991)Google Scholar
  27. 27.
    Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1997)Google Scholar
  28. 28.
    Hoag, J.T., Driver, R.D.: A delayed-advanced model for the electrodynamics two-body problem. Nonlinear Anal. 15, 165–184 (1990)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Jaroš, J., Stavroulakis, I.P.: Necessary and sufficient conditions for oscillations of difference equations with several delays. Utilitas Math. 45, 187–195 (1994)MathSciNetMATHGoogle Scholar
  30. 30.
    Koplatadze, R.G., Chanturija, T.A.: On the oscillatory and monotonic solutions of first order differential equations with deviating arguments. Differentsial’nye Uravneniya 18, 1463–1465 (1982)MATHGoogle Scholar
  31. 31.
    Kulenovic, M.R., Grammatikopoulos, M.K.: Some comparison and oscillation results for first-order differential equations and inequalities with a deviating argument. J. Math. Anal. Appl. 131, 67–84 (1988)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Koplatadze, R.G., Kvinikadze, G.: On the oscillation of solutions of first order delay differential inequalities and equations. Georgian Math. J. 1, 675–685 (1994)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Kusano, T.: On even-order functional-differential equations with advanced and retarded arguments. J. Differ. Equ. 45, 75–84 (1982)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Ladas, G.: Recent developments in the oscillation of delay difference equations. In: International Conference on Differential Equations, Stability and Control. Dekker, New York (1990)Google Scholar
  35. 35.
    Ladas, G., Stavroulakis, I.P.: Oscillations caused by several retarded and advanced arguments. J. Differ. Equ. 44, 134–152 (1982)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Ladas, G., Laskhmikantham, V., Papadakis, J.S.: Oscillations of higher-order retarded differential equations generated by retarded arguments. In: Delay and Functional Differential Equations and Their Applications, pp. 219–231. Academic, New York (1972)Google Scholar
  37. 37.
    Ladas, G., Philos, Ch.G., Sficas, Y.G.: Sharp conditions for the oscillation of delay difference equations. J. Appl. Math. Simul. 2, 101–112 (1989)MathSciNetMATHGoogle Scholar
  38. 38.
    Ladas, G., Pakula, L., Wang, Z.C.: Necessary and sufficient conditions for the oscillation of difference equations. PanAmerican Math. J. 2, 17–26 (1992)MathSciNetMATHGoogle Scholar
  39. 39.
    Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation Theory of Differential Equations with Deviating Arguments. Dekker, New York (1987)Google Scholar
  40. 40.
    Lalli, B., Zhang, B.G.: Oscillation of difference equations. Colloq. Math. 65, 25–32 (1993)MathSciNetMATHGoogle Scholar
  41. 41.
    Li, X., Zhu, D.: Oscillation and nonoscillation of advanced differential equations with variable coefficients. J. Math. Anal. Appl. 269, 462–488 (2002)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Li, X., Zhu, D.: Oscillation of advanced difference equations with variable coefficients. Ann. Differ. Equ. 18, 254–263 (2002)MATHGoogle Scholar
  43. 43.
    Lin, Y.Z., Cheng, S.S.: Complete characterizations of a class of oscillatory difference equations. J. Differ. Equ. Appl. 2, 301–313 (1996)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Luo, Z., Shen, J.H.: New results for oscillation of delay difference equations. Comput. Math. Appl. 41, 553–561 (2001)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Luo, Z., Shen, J.H.: New oscillation criteria for delay difference equations. J. Math. Anal. Appl. 264, 85–95 (2001)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Myshkis, A.D.: Linear homogeneous differential equations of first order with deviating arguments. Uspekhi Mat. Nauk, 5, 160–162 (1950) (Russian)MATHGoogle Scholar
  47. 47.
    Onose, H.: Oscillatory properties of the first-order differential inequalities with deviating argument. Funkcial. Ekvac. 26, 189–195 (1983)MathSciNetMATHGoogle Scholar
  48. 48.
    Sficas, Y.G., Stavroulakis, I.P.: Oscillation criteria for first-order delay equations. Bull. London Math. Soc. 35, 239–246 (2003)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Shen, J.H., Luo, Z.: Some oscillation criteria for difference equations. Comput. Math. Appl. 40, 713–719 (2000)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Shen, J.H., Stavroulakis, I.P.: Oscillation criteria for delay difference equations. Electron. J. Differ. Equ. 2001(10), 1–15 (2001)MathSciNetMATHGoogle Scholar
  51. 51.
    Stavroulakis, I.P.: Oscillations of delay difference equations. Comput. Math. Appl. 29, 83–88 (1995)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Stavroulakis, I.P.: Oscillation criteria for first order delay difference equations. Mediterr. J. Math. 1, 231–240 (2004)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Tang, X.H.: Oscillations of delay difference equations with variable coefficients, (Chinese). J. Central So. Univ. Technology, 29, 287–288 (1998)Google Scholar
  54. 54.
    Tang, X.H., Cheng, S.S.: An oscillation criterion for linear difference equations with oscillating coefficients. J. Comput. Appl. Math. 132, 319–329 (2001)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Tang, X.H., Yu, J.S.: A further result on the oscillation of delay difference equations. Comput. Math. Appl. 38, 229–237 (1999)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Tang, X.H., Yu, J.S.: Oscillation of delay difference equations. Comput. Math. Appl. 37, 11–20 (1999)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Tang, X.H., Yu, J.S.: Oscillations of delay difference equations in a critical state. Appl. Math. Lett. 13, 9–15 (2000)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Tang, X.H., Yu, J.S.: Oscillation of delay difference equations. Hokkaido Math. J. 29, 213–228 (2000)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Tang, X.H., Yu, J.S.: New oscillation criteria for delay difference equations. Comput. Math. Appl. 42, 1319–1330 (2001)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Tian, C.J., Xie, S.L., Cheng, S.S.: Measures for oscillatory sequences. Comput. Math. Appl. 36 (10–12),149–161 (1998)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Wang, Z.C., Stavroulakis, I.P., Qian, X.Z.: A Survey on the oscillation of solutions of first order linear differential equations with deviating arguments. Appl. Math. E-Notes 2, 171–191 (2002)MathSciNetMATHGoogle Scholar
  62. 62.
    Yan, W., Yan, J.: Comparison and oscillation results for delay difference equations with oscillating coefficients. Int. J. Math. Math. Sci. 19, 171–176 (1996)CrossRefMATHGoogle Scholar
  63. 63.
    Yu, J.S., Tang, X.H.: Comparison theorems in delay differential equations in a critical state and application. Proc. London Math. Soc. 63,188–204 (2001)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Yu, J.S., Zhang, B.G., Wang, Z.C.: Oscillation of delay difference equations. Applicable Anal. 53, 117–124 (1994)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Zhang, B.G.: Oscillation of solutions of the first-order advanced type differential equations. Sci. Explor. 2, 79–82 (1982)Google Scholar
  66. 66.
    Zhang, B.G., Zhou, Y.: The semicycles of solutions of delay difference equations. Comput. Math. Appl. 38, 31–38 (1999)CrossRefMATHGoogle Scholar
  67. 67.
    Zhang, B.G., Zhou, Y.: Comparison theorems and oscillation criteria for difference equations. J. Math. Anal. Appl. 247, 397–409 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IoanninaIoanninaGreece

Personalised recommendations