Skip to main content

Extracellular Potentials, Forward Modeling of

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience
  • 42 Accesses

Definition

Forward modeling of extracellular potentials refers to the calculation of electrical potentials recorded inside or outside the brain due to activity in neuronal (and, if relevant, glial) sources. This contrasts the “inverse” problem which amounts to estimating the underlying neural sources from recorded potentials.

Detailed Description

Extracellular potentials recorded inside or outside the brain are generated by transmembrane currents from cells in the vicinity of the recording electrode. To propagate from the membrane to a recording electrode inside the brain, the signal has to pass through brain tissue consisting of a tightly packed matrix of neurons and glial cells embedded in the extracellular medium (Nunez and Srinivasan 2006). A well-founded biophysical forward-modeling scheme based on volume-conductor theory (Rall and Shepherd 1968; Holt and Koch 1999), incorporating detailed reconstructed neuronal morphologies, allows for precise calculations of extracellular...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agudelo-Toro A, Neef A (2013) Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields. J Neural Eng 10(2):026019

    PubMed  Google Scholar 

  • Bangera NB, Schomer DL, Dehghani N, Ulbert I, Cash S, Papavasiliou S, Eisenberg SR, Dale AM, Halgren E (2010) Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution. J Comput Neurosci 29(3):371–387

    PubMed  PubMed Central  Google Scholar 

  • Bédard C, Kröger H, Destexhe A (2004) Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J 86(3):1829–1842

    PubMed  PubMed Central  Google Scholar 

  • Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451

    PubMed  Google Scholar 

  • Camuñas-Mesa LA, Quian Quiroga R (2013) A detailed and fast model of extracellular recordings. Neural Comput 25(5):1191–1212

    PubMed  Google Scholar 

  • De Schutter E (ed) (2009) Computational modeling methods for neuroscientists. MIT Press, Cambridge, MA

    Google Scholar 

  • Einevoll GT, Lindén H, Tetzlaff T, Leski S, Pettersen KH (2013a) Local field potential: biophysical origin and analysis. In: Quian Quiroga R, Panzeri S (eds) Principles of neural coding. CRC Press, Boca Raton, pp 37–59

    Google Scholar 

  • Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013b) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–785

    CAS  PubMed  Google Scholar 

  • Gold C, Henze DA, Koch C, Buzsáki G (2006) On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95(5):3113–3128

    CAS  PubMed  Google Scholar 

  • Gold C, Henze DA, Koch C (2007) Using extracellular action potential recordings to constrain compartmental models. J Comput Neurosci 23(1):39–58

    PubMed  Google Scholar 

  • Goldwyn JH, Rinzel J (2016) Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem. J Neurophysiol 115(4):2033–2051

    PubMed  PubMed Central  Google Scholar 

  • Gratiy SL, Halnes G, Denman D, Hawrylycz MJ, Koch C, Einevoll GT, Anastassiou CA (2017) From Maxwell’s equations to the theory of current-source density analysis. Eur J Neurosci 45:1013–1023

    PubMed  PubMed Central  Google Scholar 

  • Grimnes S, Martinsen ØG (2015) Bioimpedance and bioelectricity basics, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Hagen E, Ness TV, Khosrowshahi A, Sørensen C, Fyhn M, Hafting T, Franke F, Einevoll GT (2015) ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms. J Neurosci 45:182–204

    Google Scholar 

  • Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, van Albada SJ, Grün S, Diesmann M, Einevoll GT (2016) Hybrid scheme for modeling local field potentials from point-neuron networks. Cereb Cortex 26:4461–4496

    PubMed  PubMed Central  Google Scholar 

  • Hagen E, Fossum JC, Pettersen KH, Alonso J-M, Swadlow HA, Einevoll GT (2017) Focal local field potential signature of the single-axon monosynaptic thalamocortical connection. J Neurosci 37:5123–5143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen E, Næss S, Ness TV, Einevoll GT (2018) Multimodal modeling of neural network activity: computing LFP, ECoG, EEG and MEG signals with LFPy2.0. Front Neuroinform 12:92

    Google Scholar 

  • Halnes G, Maki-Marttunen T, Keller D, Pettersen KH, Andreassen OA, Einevoll GT (2016) Effect of ionic diffusion on extracellular potentials in neural tissue. PLoS Comput Biol 12(11):e1005193

    PubMed  PubMed Central  Google Scholar 

  • Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci 6(2):169–184

    CAS  PubMed  Google Scholar 

  • Hümäläinen M, Haari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography – theory, instrumentation, and application to noninvasive studies of the working human brain. Rev Mod Phys 65:413–496

    Google Scholar 

  • Kuokkanen PT, Ashida G, Kraemer A, McColgan T, Funabiki K, Wagner H, Köppl C, Carr CE, Kempter R (2018) Contribution of action potentials to the extracellular field potential in the nucleus laminaris of barn owl. J Neurophysiol 119:1422–1436

    CAS  PubMed  Google Scholar 

  • Lempka SF, McIntyre CC (2013) Theoretical analysis of the local field potential in deep brain stimulation applications. PLoS One 8(3):e59839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leski S, Lindén H, Tetzlaff T, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 9:e1003137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindén H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29(3):423–444

    PubMed  Google Scholar 

  • Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT (2011) Modeling the spatial reach of the LFP. Neuron 72(5):859–872

    PubMed  Google Scholar 

  • Lindén H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT (2014) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front Neuroinform 7:41

    PubMed  PubMed Central  Google Scholar 

  • Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55(5):809–823

    CAS  PubMed  Google Scholar 

  • Lopreore CL, Bartol TM, Coggan JS, Keller DX, Sosinsky GE, Ellisman MH, Sejnowski TJ (2008) Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophys J 95(6):2624–2635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzoni A, Lindén H, Cuntz H, Lansner A, Panzeri S, Einevoll GT (2015) Computing the local field potential (LFP) from integrate-and-fire network models. PLoS Comput Biol 11:e1004584

    PubMed  PubMed Central  Google Scholar 

  • McColgan T, Liu J, Kuokkanen PT, Carr CE, Wagner H, Kempter R (2017) Dipolar extracellular potentials generated by axonal projections. eLife 6:e26106

    PubMed  PubMed Central  Google Scholar 

  • McIntyre CC, Grill WM (2001) Finite element analysis of the current-density and electric field generated by metal microelectrodes. Ann Biomed Eng 29(3):227–235

    CAS  PubMed  Google Scholar 

  • Mechler F, Victor JD (2012) Dipole characterization of single neurons from their extracellular action potentials. J Comput Neurosci 32(1):73–100

    PubMed  Google Scholar 

  • Miceli S, Ness TV, Einevoll GT, Schubert D (2017) Impedance spectrum in cortical tissue: implications for propagation of LFP signals on the microscopic level. eNeuro 4(1):ENEURO-0291

    Google Scholar 

  • Næss S, Chintaluri HC, Ness TV, Dale AM, Einevoll GT, Wójcik DK (2017) Corrected four-sphere head model for EEG signals. Front Hum Neurosci 11:490

    PubMed  PubMed Central  Google Scholar 

  • Nelson MJ, Pouget P (2010) Do electrode properties create a problem in interpreting local field potential recordings? J Neurophysiol 103:2315–2317

    PubMed  Google Scholar 

  • Ness TB, Potworowski J, Leski S, Chintaluri HC, Glabska H, Wójcik DK, Einevoll GT (2015) Modelling and analysis of electrical potentials recorded in microelectrode arrays (MEAs). Neuroinformatics 13:403–426

    PubMed  PubMed Central  Google Scholar 

  • Ness TV, Remme MWH, Einevoll GT (2016) Active subthreshold dendritic conductances shape the local field potential. J Physiol 594:3809–3825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ness TV, Remme MWH, Einevoll GT (2018) h-type membrane current shapes the local field potential (LFP) from populations of pyramidal neurons. J Neurosci 38(26):6011–6024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38:356–368

    CAS  PubMed  Google Scholar 

  • Nicholson C, Llinas R (1971) Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. J Neurophysiol 34:509–531

    CAS  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Parasuram H, Nair B, D’Angelo E, Hines M, Naldi G, Diwakar S (2016) Computational modeling of single neuron extracellular electric potentials and network local field potentials using LFPsim. Front Comput Neurosci 10:65

    PubMed  PubMed Central  Google Scholar 

  • Pettersen KH, Einevoll GT (2008) Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophys J 94(3):784–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT (2006) Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J Neurosci Methods 154(1–2):116–133

    PubMed  Google Scholar 

  • Pettersen KH, Hagen E, Einevoll GT (2008) Estimation of population firing rates and current source densities from laminar electrode recordings. J Comput Neurosci 24(3):291–313

    PubMed  Google Scholar 

  • Pettersen KH, Lindén H, Dale AM, Einevoll GT (2012) Extracellular spikes and CSD. In: Brette R, Destexhe A (eds) Handbook of neural activity measurement. Cambridge University Press, Cambridge, UK, pp 92–135

    Google Scholar 

  • Pods J, Schonke J, Bastian P (2013) Electrodiffusion models of neurons and extracellular space using the Poisson-Nernst-Planck equations–numerical simulation of the intra- and extracellular potential for an axon model. Biophys J 105(1):242–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rall W, Shepherd GM (1968) Theoretical reconstruction of field potentials and dendro-dendritic synaptic interactions in olfactory bulb. J Neurophysiol 31:884–915

    CAS  PubMed  Google Scholar 

  • Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79(2):375–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schomburg EW, Anastassiou CA, Buzsáki G, Koch C (2012) The spiking component of oscillatory extracellular potentials in the rat hippocampus. J Neurosci 32(34):11798–11811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solbrå A, Bergersen AW, van den Brink J, Malthe-Sørenssen A, Einevoll GT, Halnes G (2018) A Kirchhoff-Nernst-Planck framework for modeling large scale extracellular electrodiffusion surrounding morphologically detailed neurons. PLoS Comput Biol 14(10):e1006510

    PubMed  PubMed Central  Google Scholar 

  • Thorbergsson PT, Garwicz M, Schouenborg J, Johansson AJ (2012) Computationally efficient simulation of extracellular recordings with multielectrode arrays. J Neurosci Methods 211(1):133–144

    PubMed  Google Scholar 

  • Tomsett RJ, Ainsworth M, Thiele A, Sanayei M, Chen X, Gieselmann MA, Whittington MA, Cunningham MO, Kaiser M (2015) Virtual electrode recording tool for extracellular potentials (VERTEX): comparing multi-electrode recordings from simulated and biological mammalian cortical tissue. Brain Struct Funct 220(4):2333–2353

    PubMed  Google Scholar 

  • Tveito A, Jæger KH, Lines GT, Paszkowski L, Sundnes J, Edwards AG, Mäki-Marttunen T, Halnes G, Einevoll GT (2017) An evaluation of the accuracy of classical models for computing the membrane potential and extracellular potential for neurons. Front Comput Neurosci 11:27

    PubMed  PubMed Central  Google Scholar 

  • Vorwerk J, Cho J-H, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607

    PubMed  Google Scholar 

  • Wagner T, Eden U, Rushmore J, Russo CJ, Dipietro L, Fregni F, Simon S, Rotman S, Pitskel NB, Ramos-Estebanez C, Pascual-Leone A, Grodzinsky AJ, Zahn M, Valero-Cabré A (2014) Impact of brain tissue filtering on neurostimulation fields: a modeling study. NeuroImage 85(Pt 3):1048–1057

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaute T. Einevoll .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Einevoll, G.T. (2020). Extracellular Potentials, Forward Modeling of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_59-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_59-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Extracellular Potentials, Forward Modeling of
    Published:
    01 September 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_59-2

  2. Original

    Extracellular Potentials, Forward Modeling of
    Published:
    07 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_59-1