Skip to main content

Complement Component (3b/4b) Receptor 1 (CR1)

  • Chapter
  • First Online:
Genetic Variants in Alzheimer's Disease

Abstract

Complement Component (3b/4b) Receptor 1 (CR1) is a gene which has undergone rigorous research over the years due to its relationship with multiple diseases, different protein allotypes (giving rise to the Knops blood group system) and well-characterised genetic polymorphisms. In 2009 a genome-wide association study linked the gene to Alzheimer’s disease (AD) susceptibility. It has been speculated that the gene’s involvement in neuroinflammation or Aβ clearance may form the basis of this association, but how this manifests in an alteration in disease risk remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambert J-C et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099

    PubMed  CAS  Google Scholar 

  2. Kent WJ et al (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    PubMed  CAS  Google Scholar 

  3. Yoon SH, Fearon DT (1985) Characterization of a soluble form of the C3b/C4b receptor (CR1) in human plasma. J Immunol 134(5):3332–3338

    PubMed  CAS  Google Scholar 

  4. Crehan H et al (2012) Complement receptor 1 (CR1) and Alzheimer’s disease. Immunobiology 217(2):244–250

    PubMed  CAS  Google Scholar 

  5. Liu D, Niu ZX (2009) The structure, genetic polymorphisms, expression and biological functions of complement receptor type 1 (CR1/CD35). Immunopharmacol Immunotoxicol 31(4):524–535

    PubMed  CAS  Google Scholar 

  6. Gasque P et al (1996) Identification and characterization of complement C3 receptors on human astrocytes. J Immunol 156(6):2247–2255

    PubMed  CAS  Google Scholar 

  7. Hollingworth P et al (2010) Alzheimer’s disease genetics: current knowledge and future challenges. Int J Geriatr Psychiatry 26:793–802

    PubMed  Google Scholar 

  8. Zanjani H et al (2005) Complement activation in very early Alzheimer disease. Alzheimer Dis Assoc Disord 19(2):55–66

    PubMed  CAS  Google Scholar 

  9. Singhrao SK et al (1999) Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest 79(10):1247–1259

    PubMed  CAS  Google Scholar 

  10. Pascual M et al (1994) Identification of membrane-bound CR1 (CD35) in human urine: evidence for its release by glomerular podocytes. J Exp Med 179(3):889–899

    PubMed  CAS  Google Scholar 

  11. Moulds JM (2010) The Knops blood-group system: a review. Immunohematology 26(1):2–7

    PubMed  CAS  Google Scholar 

  12. Wilson JG et al (1986) Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erythrocytes. J Exp Med 164(1):50–59

    PubMed  CAS  Google Scholar 

  13. Krych-Goldberg M, Atkinson JP (2001) Structure-function relationships of complement receptor type 1. Immunol Rev 180:112–122

    PubMed  CAS  Google Scholar 

  14. Fearon DT, Collins LA (1983) Increased expression of C3b receptors on polymorphonuclear leukocytes induced by chemotactic factors and by purification procedures. J Immunol 130(1):370–375

    PubMed  CAS  Google Scholar 

  15. Kim JH, Lee S, Choe SY (1999) Characterization of the human CR1 gene promoter. IUBMB Life 47(4):655–663

    CAS  Google Scholar 

  16. Kunz D et al (1989) Identification of the promoter sequences involved in the interleukin-6 dependent expression of the rat alpha 2-macroglobulin gene. Nucleic Acids Res 17(3):1121–1138

    PubMed  CAS  Google Scholar 

  17. Wong WW (1990) Structural and functional correlation of the human complement receptor type 1. J Invest Dermatol 94(6 Suppl):64S–67S

    PubMed  CAS  Google Scholar 

  18. Ovcharenko I et al (2004) ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res 32(Web Server issue):W280–W286

    PubMed  CAS  Google Scholar 

  19. Holers VM et al (1987) Human complement C3b/C4b receptor (CR1) mRNA polymorphism that correlates with the CR1 allelic molecular weight polymorphism. Proc Natl Acad Sci USA 84(8):2459–2463

    PubMed  CAS  Google Scholar 

  20. Klickstein LB et al (1987) Human C3b/C4b receptor (CR1). Demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristics of C3/C4 binding proteins. J Exp Med 165(4):1095–1112

    PubMed  CAS  Google Scholar 

  21. Klickstein LB et al (1988) Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis. J Exp Med 168(5):1699–1717

    PubMed  CAS  Google Scholar 

  22. Wong WW et al (1989) Structure of the human CR1 gene. Molecular basis of the structural and quantitative polymorphisms and identification of a new CR1-like allele. J Exp Med 169(3):847–863

    PubMed  CAS  Google Scholar 

  23. Bettens K et al (2012) Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk. Mol Neurodegener 7(1):3

    PubMed  CAS  Google Scholar 

  24. Tas SW et al (1999) C1q and C4b bind simultaneously to CR1 and additively support erythrocyte adhesion. J Immunol 163(9):5056–5063

    PubMed  CAS  Google Scholar 

  25. Ghiran I et al (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192(12):1797–1808

    PubMed  CAS  Google Scholar 

  26. Krych-Goldberg M et al (1999) Decay accelerating activity of complement receptor type 1 (CD35). Two active sites are required for dissociating C5 convertases. J Biol Chem 274(44):31160–31168

    PubMed  CAS  Google Scholar 

  27. Krych M et al (1994) Analysis of the functional domains of complement receptor type 1 (C3b/C4b receptor; CD35) by substitution mutagenesis. J Biol Chem 269(18):13273–13278

    PubMed  CAS  Google Scholar 

  28. Krych M, Hauhart R, Atkinson JP (1998) Structure-function analysis of the active sites of complement receptor type 1. J Biol Chem 273(15):8623–8629

    PubMed  CAS  Google Scholar 

  29. Bertram L, Tanzi RE (2010) Alzheimer disease: new light on an old CLU. Nat Rev Neurol 6(1):11–13

    PubMed  CAS  Google Scholar 

  30. Taniguchi-Sidle A, Isenman DE (1994) Interactions of human complement component C3 with factor B and with complement receptors type 1 (CR1, CD35) and type 3 (CR3, CD11b/CD18) involve an acidic sequence at the N-terminus of C3 alpha'-chain. J Immunol 153(11):5285–5302

    PubMed  CAS  Google Scholar 

  31. Arnaout MA et al (1983) Low ionic strength or chemical cross-linking of monomeric C3b increases its binding affinity to the human complement C3b receptor. Immunology 48(2):229–237

    PubMed  CAS  Google Scholar 

  32. Wong WW, Farrell SA (1991) Proposed structure of the F′ allotype of human CR1. Loss of a C3b binding site may be associated with altered function. J Immunol 146(2):656–662

    PubMed  CAS  Google Scholar 

  33. Fingeroth JD, Heath ME, Ambrosino DM (1989) Proliferation of resting B cells is modulated by CR2 and CR1. Immunol Lett 21(4):291–301

    PubMed  CAS  Google Scholar 

  34. Jozsi M et al (2002) Complement receptor type 1 (CD35) mediates inhibitory signals in human B lymphocytes. J Immunol 168(6):2782–2788

    PubMed  CAS  Google Scholar 

  35. Khera R, Das N (2009) Complement receptor 1: disease associations and therapeutic implications. Mol Immunol 46(5):761–772

    PubMed  CAS  Google Scholar 

  36. Wright SD, Silverstein SC (1982) Tumor-promoting phorbol esters stimulate C3b and C3b′ receptor-mediated phagocytosis in cultured human monocytes. J Exp Med 156(4):1149–1164

    PubMed  CAS  Google Scholar 

  37. Bacle F et al (1990) Induction of IL-1 release through stimulation of the C3b/C4b complement receptor type one (CR1, CD35) on human monocytes. J Immunol 144(1):147–152

    PubMed  CAS  Google Scholar 

  38. Pascual M et al (1993) Circulating soluble CR1 (CD35). Serum levels in diseases and evidence for its release by human leukocytes. J Immunol 151(3):1702–1711

    PubMed  CAS  Google Scholar 

  39. Danielsson C et al (1994) Soluble complement receptor type 1 (CD35) is released from leukocytes by surface cleavage. Eur J Immunol 24(11):2725–2731

    PubMed  CAS  Google Scholar 

  40. Hamer I et al (1998) Soluble form of complement C3b/C4b receptor (CR1) results from a proteolytic cleavage in the C-terminal region of CR1 transmembrane domain. Biochem J 329(Pt 1):183–190

    PubMed  CAS  Google Scholar 

  41. Ramaglia V et al (2008) Soluble complement receptor 1 protects the peripheral nerve from early axon loss after injury. Am J Pathol 172(4):1043–1052

    PubMed  Google Scholar 

  42. Weis JH et al (1987) A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32. J Immunol 138(1):312–315

    PubMed  CAS  Google Scholar 

  43. Cockburn IA, Rowe JA (2006) Erythrocyte complement receptor 1 (CR1) expression level is not associated with polymorphisms in the promoter or 3′ untranslated regions of the CR1 gene. Int J Immunogenet 33(1):17–20

    PubMed  CAS  Google Scholar 

  44. Wong WW, Wilson JG, Fearon DT (1983) Genetic regulation of a structural polymorphism of human C3b receptor. J Clin Invest 72(2):685–693

    PubMed  CAS  Google Scholar 

  45. Dykman TR et al (1983) Polymorphism of human erythrocyte C3b/C4b receptor. Proc Natl Acad Sci USA 80(6):1698–1702

    PubMed  CAS  Google Scholar 

  46. Katyal M et al (2003) Genetic and structural polymorphism of complement receptor 1 in normal Indian subjects. Immunol Lett 89(2–3):93–98

    PubMed  CAS  Google Scholar 

  47. Xiang L et al (1999) Quantitative alleles of CR1: coding sequence analysis and comparison of haplotypes in two ethnic groups. J Immunol 163(9):4939–4945

    PubMed  CAS  Google Scholar 

  48. Rowe JA et al (2002) Erythrocyte CR1 expression level does not correlate with a HindIII restriction fragment length polymorphism in Africans; implications for studies on malaria susceptibility. Genes Immun 3(8):497–500

    PubMed  CAS  Google Scholar 

  49. Gibson NC, Waxman FJ (1994) Relationship between immune complex binding and release and the quantitative expression of the complement receptor, type 1 (CR1, CD35) on human erythrocytes. Clin Immunol Immunopathol 70(2):104–113

    PubMed  CAS  Google Scholar 

  50. Moulds JM et al (1992) Antiglobulin testing for CR1-related (Knops/McCoy/Swain-Langley/York) blood group antigens: negative and weak reactions are caused by variable expression of CR1. Vox Sang 62(4):230–235

    PubMed  CAS  Google Scholar 

  51. Cockburn IA et al (2004) A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci USA 101(1):272–277

    PubMed  CAS  Google Scholar 

  52. Daniels GL et al (1995) Blood group terminology 1995. ISBT working party on terminology for red cell surface antigens. Vox Sang 69(3):265–279

    PubMed  CAS  Google Scholar 

  53. Moulds JM et al (1991) The C3b/C4b receptor is recognized by the Knops, McCoy, Swain-langley, and York blood group antisera. J Exp Med 173(5):1159–1163

    PubMed  CAS  Google Scholar 

  54. Rao N et al (1991) Identification of human erythrocyte blood group antigens on the C3b/C4b receptor. J Immunol 146(10):3502–3507

    PubMed  CAS  Google Scholar 

  55. Moulds JM et al (2001) Molecular identification of Knops blood group polymorphisms found in long homologous region D of complement receptor 1. Blood 97(9):2879–2885

    PubMed  CAS  Google Scholar 

  56. Veldhuisen B et al (2011) Molecular analysis of the York antigen of the Knops blood group system. Transfusion 51(7):1389–1396

    PubMed  CAS  Google Scholar 

  57. Moulds JM et al (2002) Expansion of the Knops blood group system and subdivision of Sl(a). Transfusion 42(2):251–256

    PubMed  CAS  Google Scholar 

  58. Covas DT et al (2007) Knops blood group haplotypes among distinct Brazilian populations. Transfusion 47(1):147–153

    PubMed  CAS  Google Scholar 

  59. Ross GD et al (1985) Disease-associated loss of erythrocyte complement receptors (CR1, C3b receptors) in patients with systemic lupus erythematosus and other diseases involving autoantibodies and/or complement activation. J Immunol 135(3):2005–2014

    PubMed  CAS  Google Scholar 

  60. Wilson JG et al (1986) Decreased expression of the C3b/C4b receptor (CR1) and the C3d receptor (CR2) on B lymphocytes and of CR1 on neutrophils of patients with systemic lupus erythematosus. Arthritis Rheum 29(6):739–747

    PubMed  CAS  Google Scholar 

  61. Walport M, Ng YC, Lachmann PJ (1987) Erythrocytes transfused into patients with SLE and haemolytic anaemia lose complement receptor type 1 from their cell surface. Clin Exp Immunol 69(3):501–507

    PubMed  CAS  Google Scholar 

  62. Walport MJ et al (1985) Family studies of erythrocyte complement receptor type 1 levels: reduced levels in patients with SLE are acquired, not inherited. Clin Exp Immunol 59(3):547–554

    PubMed  CAS  Google Scholar 

  63. Kumar A et al (1995) Hind III genomic polymorphism of the C3b receptor (CR1) in patients with SLE: low erythrocyte CR1 expression is an acquired phenomenon. Immunol Cell Biol 73(5):457–462

    PubMed  CAS  Google Scholar 

  64. Moulds JM, Reveille JD, Arnett FC (1996) Structural polymorphisms of complement receptor 1 (CR1) in systemic lupus erythematosus (SLE) patients and normal controls of three ethnic groups. Clin Exp Immunol 105(2):302–305

    PubMed  CAS  Google Scholar 

  65. Kumar A, Malaviya AN, Srivastava LM (1994) Lowered expression of C3b receptor (CR1) on erythrocytes of rheumatoid arthritis patients. Immunobiology 191(1):9–20

    PubMed  CAS  Google Scholar 

  66. Ruuska PE et al (1992) Normal C3b receptor (CR1) genomic polymorphism in patients with insulin-dependent diabetes mellitus (IDDM): is the low erythrocyte CR1 expression an acquired phenomenon? Clin Exp Immunol 89(1):18–21

    PubMed  CAS  Google Scholar 

  67. Jouvin MH et al (1987) Decreased expression of the C3b/C4b complement receptor (CR1) in AIDS and AIDS-related syndromes correlates with clinical subpopulations of patients with HIV infection. AIDS 1(2):89–94

    PubMed  CAS  Google Scholar 

  68. Rowe JA et al (1997) P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388(6639):292–295

    PubMed  CAS  Google Scholar 

  69. Hamilton G et al (2012) Alzheimer’s disease risk factor complement receptor 1 is associated with depression. Neurosci Lett 510(1):6–9

    PubMed  CAS  Google Scholar 

  70. International HapMap Consortium (2003) The International HapMap Project. Nature 426(6968):789–796

    Google Scholar 

  71. Barrett JC et al (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    PubMed  CAS  Google Scholar 

  72. Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    PubMed  CAS  Google Scholar 

  73. Seshadri S et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840

    PubMed  CAS  Google Scholar 

  74. Zhang Q et al (2010) Complement receptor 1 polymorphisms and risk of late-onset Alzheimer’s disease. Brain Res 1348:216–221

    PubMed  CAS  Google Scholar 

  75. Chen LH et al (2012) Polymorphisms of CR1, CLU and PICALM confer susceptibility of Alzheimer’s disease in a southern Chinese population. Neurobiol Aging 33(1):210e1–210e7

    Google Scholar 

  76. Lee JH et al (2010) Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Arch Neurol 68:320–328

    PubMed  Google Scholar 

  77. Logue MW et al (2011) A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol 68(12):1569–1579

    PubMed  Google Scholar 

  78. Jun G et al (2010) Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67:1473–1484

    PubMed  Google Scholar 

  79. Brouwers N et al (2012) Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry 17(2):223–233

    PubMed  CAS  Google Scholar 

  80. Ferrari R et al (2012) Implication of common and disease specific variants in CLU, CR1, and PICALM. Neurobiol Aging 33:1846e7–1846e18

    Google Scholar 

  81. Kauwe JS et al (2011) Fine mapping of genetic variants in BIN1, CLU, CR1 and PICALM for association with cerebrospinal fluid biomarkers for Alzheimer’s disease. PLoS One 6(2):e15918

    PubMed  CAS  Google Scholar 

  82. Schjeide BM et al (2011) The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels. Arch Gen Psychiatry 68(2):207–213

    PubMed  CAS  Google Scholar 

  83. Mengel-From J et al (2010) Genetic variations in the CLU and PICALM genes are associated with cognitive function in the oldest old. Neurobiol Aging 32:554e7–554e11

    Google Scholar 

  84. Kok EH et al (2011) CLU, CR1 and PICALM genes associate with Alzheimer’s-related senile plaques. Alzheimers Res Ther 3(2):12

    PubMed  CAS  Google Scholar 

  85. Chibnik LB et al (2011) CR1 is associated with amyloid plaque burden and age-related cognitive decline. Ann Neurol 69(3):560–569

    PubMed  CAS  Google Scholar 

  86. Keenan BT et al (2012) A coding variant in CR1 interacts with APOE-epsilon4 to influence cognitive decline. Hum Mol Genet 21(10):2377–2388

    PubMed  CAS  Google Scholar 

  87. Biffi A et al (2010) Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol 67(6):677–685

    PubMed  Google Scholar 

  88. Furney SJ et al (2010) Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease. Mol Psychiatry 16:1130–1138

    PubMed  Google Scholar 

  89. Rogers J et al (1992) Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA 89(21):10016–10020

    PubMed  CAS  Google Scholar 

  90. Bradt BM, Kolb WP, Cooper NR (1998) Complement-dependent proinflammatory properties of the Alzheimer’s disease beta-peptide. J Exp Med 188(3):431–438

    PubMed  CAS  Google Scholar 

  91. Rogers J et al (2006) Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes. Neurobiol Aging 27(12):1733–1739

    PubMed  CAS  Google Scholar 

  92. Sleegers K et al (2010) The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet 26(2):84–93

    PubMed  CAS  Google Scholar 

  93. Andersen K et al (1995) Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer’s disease? The Rotterdam Study. Neurology 45(8):1441–1445

    PubMed  CAS  Google Scholar 

  94. Breitner JC et al (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44(2):227–232

    PubMed  CAS  Google Scholar 

  95. Stewart WF et al (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48(3):626–632

    PubMed  CAS  Google Scholar 

  96. Aisen PS et al (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289(21):2819–2826

    PubMed  CAS  Google Scholar 

  97. Martin BK et al (2008) Cognitive function over time in the Alzheimer’s disease anti-inflammatory prevention trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 65(7):896–905

    PubMed  Google Scholar 

  98. Akiyama H et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421

    PubMed  CAS  Google Scholar 

  99. Wyss-Coray T et al (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA 99(16):10837–10842

    PubMed  CAS  Google Scholar 

  100. Yasojima K et al (1999) Up-regulated production and activation of the complement system in Alzheimer’s disease brain. Am J Pathol 154(3):927–936

    PubMed  CAS  Google Scholar 

  101. Fonseca MI et al (2004) Neuronal localization of C1q in preclinical Alzheimer’s disease. Neurobiol Dis 15(1):40–46

    PubMed  CAS  Google Scholar 

  102. Fonseca MI et al (2011) Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer’s disease. J Neuroinflammation 8(1):4

    PubMed  Google Scholar 

  103. Bralten J et al (2011) CR1 genotype is associated with entorhinal cortex volume in young healthy adults. Neurobiol Aging 32:2106

    PubMed  Google Scholar 

  104. Shaw P et al (2007) Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurol 6(6):494–500

    PubMed  CAS  Google Scholar 

  105. Corneveaux JJ et al (2010) Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 19(16):3295–3301

    PubMed  CAS  Google Scholar 

  106. Carrasquillo MM et al (2010) Replication of CLU, CR1, and PICALM associations with Alzheimer disease. Arch Neurol 67(8):961–964

    PubMed  CAS  Google Scholar 

  107. Wijsman EM, Pankratz ND, Choi Y, Rothstein JH, Faber KM, Cheng R, Lee JH, Bird TD, Bennett DA, Diaz-Arrastia R, Goate AM, Farlow M, Ghetti B, Sweet RA, Foroud TM, Mayeux R (2011) Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet 7(2):e1001308

    PubMed  CAS  Google Scholar 

  108. Naj AC et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Lord .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lord, J., Morgan, K. (2013). Complement Component (3b/4b) Receptor 1 (CR1). In: Morgan, K., Carrasquillo, M. (eds) Genetic Variants in Alzheimer's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7309-1_5

Download citation

Publish with us

Policies and ethics