Skip to main content

The HIV Infection Model

  • Chapter
  • First Online:
War in the Body
  • 822 Accesses

Abstract

For reasons explained in the Introduction, the model must accommodate new variant populations produced through random mutation (which will appear initially in a single infected cell), possible lineage-extinction, and heterogeneous replication. Multiple genomes, PIT types, and some kind of stochastic process are inevitable components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC (2005) Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435(7038):108–114

    Article  PubMed  CAS  Google Scholar 

  2. Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS (1998) Early establishment of a pool of latently infected, resting CD4+ T cells during primary human immunodeficiency virus1 infection. Proc. Nat. Acad. Science USA 95:8869–8873

    Article  CAS  Google Scholar 

  3. Ciuffi A, Blieber G, Munoz M et al (2004) Entry and transcription as key determinants of differences in CD4+ T-cell permissiveness to human immunodeficiency virus type-1 infection. J Virol 78:10747–10754

    Article  PubMed  CAS  Google Scholar 

  4. Dimitrov DS, Wiley RL, Sato H et al (1993) Quantitation of human immunodeficiency virus-1 infection kinetics. J Virol 67:2182

    PubMed  CAS  Google Scholar 

  5. Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, Heldebrant C, Smith R, Conrad A, Kleinman SH, Busch MP (2003) Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS 17:1871–1879

    Article  PubMed  Google Scholar 

  6. Finzi D, Blankson J, Siliciano JD et al (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of human immunodeficiency virus1 even in patients on effective combination therapy. Nat Med 5(5):512–517

    Article  PubMed  CAS  Google Scholar 

  7. Goh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN, Nowak MA, Hahn BH, Emerman M (1998) HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med 4(1):65–71

    Google Scholar 

  8. He J et al (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34set − pointcdc2 activity. J Virol 69:6705–6711

    PubMed  CAS  Google Scholar 

  9. Holte S, Emerman M (2000) A competition model for viral inhibition of host cell proliferation. Math Biosci 166:69–84

    Article  Google Scholar 

  10. Igarashi T, Brown C, Azadegan A et al (1999) Human immunodeficiency virus type 1 neutralizing antibodies accelerate clearance of cell-free virions from blood plasma. Nat Med 5(2):211

    Article  PubMed  CAS  Google Scholar 

  11. Jagers P (1975) Branching processes with biological applications. Wiley, New York

    Google Scholar 

  12. Kim S, Byrn R, Goopman J, Baltimore D (1989) Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol 63(9):3708–3713

    PubMed  CAS  Google Scholar 

  13. Klatt NR, Shudo EO, Engram AM et al (2010) CD8+ lymphocytes control viral replication in SIVmac239-infected Rhesus Macaques without decreasing the lifespan of productively infected cells. PLoS Pathog 1(6):e1000747. doi:10.1371/journal.ppat.1000747

    Article  Google Scholar 

  14. Kreisberg JF, Yonemoto W, Greene WC (2006) Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J Exp Med 203(4):865–870

    Article  PubMed  CAS  Google Scholar 

  15. Little SJ, McLean AR, Spina CA, Richman DD, Havlir DV (1999) Viral dynamics of acute HIV-1 infection. J Exp Med 190:841–850

    Article  PubMed  CAS  Google Scholar 

  16. Moolgavkar SH, Knudson AG Jr (1981) Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst 66:1037–1052

    PubMed  CAS  Google Scholar 

  17. Perelson AS, Neumann AU, Markowitz M et al (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586

    Article  PubMed  CAS  Google Scholar 

  18. Ranki A, Lagerstedt A, Ovod V, Aavik E, Krohn KJ (1994) Expression kinetics and subcellular localization of HIV-1 regulatory proteins Nef, Tat and Rev in acutely and chronically infected lymphoid cell lines. Arch Virol 139:365–378

    Article  PubMed  CAS  Google Scholar 

  19. Re F et al (1995) Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34set − pointcdc2-cyclin. J Virol 69:6859–6864

    PubMed  CAS  Google Scholar 

  20. Rogel ME, Wu LI, Emerman M (1995) The human immunodeficiency virus type 1 Vpr gene prevents cell proliferation during chronic infection. 69:882–888

    Google Scholar 

  21. Speelmon EC, Livingston-Rosanoff D, Li SS, Vu Q, Bui J, Geraghty DE, Zhao LP, McElrath MJ (2006) Genetic association of the antiviral restriction factor TRIM5alpha with human immunodeficiency virus type 1 infection. J Virol 80(5):2463–2471

    Article  PubMed  CAS  Google Scholar 

  22. Srivastava KK, Fernandez-Larsson R, Zinkus DM, Robinson HL (1991) Human immunodeficiency virus type 1 NL4-3 replication in four T-cell lines: rate and efficiency of entry, a major determinant of permissiveness. J Virol 65:3900–3902

    PubMed  CAS  Google Scholar 

  23. Stewart SA, Poon B, Jowett J, Chen I (1997) Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 71(7):5579–5592

    PubMed  CAS  Google Scholar 

  24. Wick D (1999) The disappearing CD4+ T cells in HIV infection: a case of over-stimulation? J Theor Biol 197:507–516

    Article  PubMed  CAS  Google Scholar 

  25. Wick D, Self SG (2000) Early HIV infection In vivo: branching-process model for studying timing of immune responses and drug therapy. Math Biosci 165:115–134

    Article  PubMed  CAS  Google Scholar 

  26. Wick D, Self SG (2002) What’s the matter with HIV-directed killer T-cells? J Theor Biol 219:19–31

    PubMed  CAS  Google Scholar 

  27. Wick D, Self SG (2005) How fast can HIV escape from immune control? In: Tan W-Y, Wu H (eds) Deterministic and stochastic models of AIDS epidemics and HIV infections with intervention. World Scientific, Singapore

    Google Scholar 

  28. Wong JK, Strain MC, Porrata RR et al (2010) In vivo CD8+ T-cell suppression of SIV viremia is not mediated by CTL clearance of productively infected cells. PLoS Pathog e1000748. doi:10.1371/journal.ppat.1000748

    Google Scholar 

  29. Yang OO, Kalams SA, Rosenzweig M, Trocha A, Jones N, Koziel M, Walker BD, Johnson RP (1996) Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. J Virol 70:5799–5806

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wick, W.D., Yang, O.O. (2013). The HIV Infection Model. In: War in the Body. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7294-0_2

Download citation

Publish with us

Policies and ethics