Skip to main content

Introduction

  • Chapter
  • First Online:
War in the Body
  • 821 Accesses

Abstract

In 1984, two groups of investigators—Luc A. Montagnier’s at the Pasteur Institute in Paris and Robert C. Gallo’s at the National Institutes of Health in Bethesda, Maryland—announced the discovery of the human immunodeficiency virus (HIV in this book, although H.I.V. in the New York Times). The clinical manifestations of a new disease, acquired immunodeficiency syndrome (AIDS), had been observed 3 years earlier, in a population of men who have sex with men, in several cities of the United States. At this writing, HIV has established a global pandemic, among the worst in recorded history; 33 million people are currently infected worldwide, with 2.5 million new infections each year. At least 25 million have died of AIDS. The primary modes of transmission at this time are unprotected sexual activity and intravenous drug users sharing syringes. Although the government’s top-ranking doctor, Edward Brandt Jr., said shortly after the virus was discovered that he was optimistic that a vaccine would be available by 1987, 20 years later no vaccine against HIV/AIDS has been licensed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The 2008 Nobel Prize in Medicine was awarded to Montagnier and Françoise Barré-Sinoussi for the discovery of the human immunodeficiency virus and Harald zur Hausen for discover of the human papilloma virus, which causes cervical cancer. The Karolinska Institute’s opinion about the discoverers of HIV is controversial, coming after a long and acrimonious dispute between the French and American camps.

  2. 2.

    A brief account of a cluster of cases in Los Angeles of combined pneumocystis pneumonia and Kaposi’s sarcoma appeared in the Morbidity and Mortality Weekly, published by the Centers for Disease Control (CDC), in June, 1981. The combination of a rare form of pneumonia with a rare skin cancer alerted epidemiologists that a new infectious disease may have appeared.

  3. 3.

    These are revised estimates by UNAIDS, released on November 20, 2007. The current estimate of 33.2 (confidence interval, [30.6,36.1]) million infected replaced an earlier estimate of 39.5 ([34.1,47.1]); the UN agency’s revisions reflects lowered estimates primarily of the epidemic in India.

  4. 4.

    “Virus” is Latin for poison or slime; these disease-causing agents—originally called “filterable viruses” because they passed through the finest sieves in the laboratory—were discovered around 1915.

  5. 5.

    Pan troglodytes troglodytes; the “greater” chimpanzee.

  6. 6.

    Cercocebus atys.

  7. 7.

    There is also a reported route for virions to pass directly between cells by hijacking the immunological synapse formed between APCs and T-cells or creating a “virological synapse” between two CD4+ T-cells. Although this mechanism for cell-to-cell spread had been demonstrated in vitro, its importance in vivo is unknown.

  8. 8.

    The eclipse period was incorrectly estimated in 1996, from data about declining viremia after HAART, to be 1.1 day [237], a figure which made it into many models including some of my own. For discussion of this issue, see the Notes to Section 1.7.

  9. 9.

    It is sometimes asserted that only non-synonymous mutations can confer an advantage, but there are situations—involving RNA secondary structure or codon usage—where synonymous changes also affect fitness. Nevertheless, geneticists often use the ratio of synonymous to non-synonymous variation as a measure of the relative importance of neutral “drift” and selection.

  10. 10.

    A rationally-designed drug is one that was developed on the basis of hypotheses about disease mechanisms at the molecular level, perhaps including detailed X-ray photographs revealing the structure of targeted proteins. By contrast, most drugs in clinical use, even today, were discovered in screening programs and the mechanism of action is often unknown. The earlier anti-viral drugs licensed were acyclovir, amantadine, vidarabine, and ribavirin, active against herpes, flu, and hepatitis. The hurdle in discovering anti-viral drugs is that viruses hijack cellular enzymes to facilitate reproduction, so drugs acting against them are often toxic for the host. Bacteria bring along their own enzymatic machinery and thus are easier to target.

  11. 11.

    The assertion was made at the time that 36 months of drug treatment would amount to a cure. This prediction failure was probably due to neglecting the possibility of latency at the cellular level (see Chapters 2 and 10) rather than escape by mutation.

  12. 12.

    In 1957, Macfarlane Burnet had proposed the “clonal selection theory” to explain antibody diversity; a few years before, Niels Kaj Jerne, who also coined the term “epitope”, had expressed similar ideas. When, around 1962, Jacques Miller and collaborators demonstrated T-cell education by the thymus, it fully realized Jerne’s and Burnet’s conceptions. Random generation and selection replaced older concepts such as “instruction”, meaning that antigen had to be present at antibody or TCR creation; it has been called the Kuhnian revolution, aka “paradigm shift”, in immunology.

  13. 13.

    Some immunologists believe that some CD4s are cytotoxic, while some CD8s are not; this is typical of the field.

  14. 14.

    The collection of genes that encode these molecules is called the major-histocompatibility-complex (MHC); it is divided into three HLA regions. HLA class I are the molecules that display antigen to CD8 T-cells, and HLA class II display to CD4 T-cells.

  15. 15.

    HLA restriction of T-cell epitopes was discovered by Rolf M. Zinkernagel and collaborators in 1974.

  16. 16.

    For instance, there are three subvarieties of HLA class-I molecules, called A, B, and C; each of us has two of each type, one from each parent. The number of known variants (called “alleles”) are, A: 85; B: 185; and C: 42.

  17. 17.

    Proving an inequality. A wiseacre once defined a mathematical physicist as a person who knows that 2 + 2 lies between 3. 99 and 4. 01.

  18. 18.

    CD8+ T lymphocytes also secrete various cytokines that may have anti-viral effects.

  19. 19.

    In most of the medical literature a “model” means a disease in a laboratory animal that mimics the human affliction; i.e., in vivo rather than in silico.

  20. 20.

    The earliest proposal of “interspecific” rivalry, e.g., between parasite and host, as opposed to Darwin’s (and population geneticists’) intraspecific competition, may have been due to the 19th century Russian immunologist, Ilya Metchnikoff, a collaborator of Louis Pasteur.

  21. 21.

    Eigen and Schuster were revolutionaries, but not so much because they believed in a high mutation rate (which simply sets the pace of evolution), but rather because they left Fisher-type competition out of their models!

  22. 22.

    It was the precursor of the branch of analytical philosophy that later came to be called “logical positivism.”

  23. 23.

    The analogy to Austrian physicist Ludwig Boltzmann’s H Theorem, which proves that entropy in a dilute gas always increases, at a rate proportional to the deviance from a Gaussian law, is obvious. Fisher himself remarked, referring to the second law of thermodynamics, “It is not a little instructive that so similar a law should hold the supreme position among the biological sciences”. Boltzmann’s atomism was much derided by the arch-positivist, Ernst Mach, and therefore Fisher the geneticist was not an adherent to positivism.

  24. 24.

    Fisher noted the objection, remarking in a lecture in 1953, “Of course, for any particular species, it does not follow that it is gaining on its competitors and enemies…”

  25. 25.

    Etch-a-Sketch is a mechanical drawing toy invented by French inventor Andre Cassagnes and subsequently manufactured by the Ohio Art Company.

  26. 26.

    The “ordinary” bit apparently refers to a single independent variable, namely time, as opposed to “partial differential equations”, PDEs, which have more independent variables. Unfortunately, this peculiar usage—no one We know of can produce even an historical defense of “ordinary” or “partial”—resists being driven out by some more evocative phrase, e.g., “deterministic rate equations”.

  27. 27.

    ODEs achieved popular recognition with the success of James Gleich’s book “Chaos: Making a New Science” in 1987. The type of “chaos” described in that book, that can occur with just three compartments (which we mention several times later for pedagogical reasons), will not play a role in this book. Another kind of “chaos” will, in higher-dimensional infection models: namely, that due to heterogeneity in reproduction.

  28. 28.

    Louis Bachelier’s thesis contained the first mathematical treatment of markets, based on the assumption that price shifts are like random walks. This work is stunning for physicists, as it develops most of the theory of Brownian motion usually credited to Einstein; the shock is partially relieved upon noting the thesis adviser, and learning that Poincaré lectured on Brownian motion at the International Congress of Physics in Paris, in 1900.

  29. 29.

    In fact, Einstein admitted that he had no idea whether what he was describing was identical with “the so-called …Brownian motion”; what he wanted to do was to overthrow Mach’s positivistic rejection of the reality of atoms.

  30. 30.

    Trials of vaccines in monkeys often use 1,000 MID50s (1,000 times one monkey-infectious dose that infects 50 % of the time), in order to avoid wasting money and resources.

Bibliography

  1. Addo MM, Yu XG, Rathod A et al (2003) Comprehensive epitope analysis of human immunodeficiency virustype 1 (HIV 1) specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 77:2081–2092

    Article  PubMed  CAS  Google Scholar 

  2. Allen TM, Altfeld M, Geer SC, Kalife ET, Moore C, O’sullivan KM, Desouza I, Feeney ME, Eldridge RL, Maier EL, Kaufmann DE, Lahaie MP, Reyor L, Tanzi G, Johnston MN, Brander C, Draenert R, Rockstroh JK, Jessen H, Rosenberg ES, Mallal SA, Walker BD (2005) Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol 79(21):13239–13249

    Article  PubMed  CAS  Google Scholar 

  3. Altfeld M, Addo MM, Rosenberg ES, Hecht FM, Lee PK, Vogel M, Yu XG, Draenert R, Johnston MN, Strick D, Allen TM, Feeney ME, Kahn JO, Sekaly RP, Levy JA, Rockstroh JK, Goulder PJ, Walker BD (2003) Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS 17:2581–2591

    Article  PubMed  CAS  Google Scholar 

  4. Altfeld M, Kalife ET, Qi Y, Streeck H, Lichterfeld M, Johnston MN, Burgett N, Swartz ME, Yang A, Alter G, Yu XG, Meier A, Rockstroh JK, Allen TM, Jessen H, Rosenberg ES, Carrington M, Walker BD (2006) HLA alleles associated with delayed progression to AIDS contribute strongly to the initial CD8(+) T cell response against HIV-1. PLoS Med 3:e403

    Article  PubMed  CAS  Google Scholar 

  5. Ahmed R, Irvin SY Chen (1999) Persistent viral infections. Wiley, New York

    Google Scholar 

  6. Anthony KB, Yoder C, Metcalf JA, DerSimonian R, Orenstein JM, Stevens RA, Falloon J, Polis MA, Lane HC, Sereti I (2003) Incomplete CD4 T cell recovery in HIV-1 infection after 12 months of highly active antiretroviral therapy is associated with ongoing increased CD4 T cell activation and turnover. J Acquir Immune Defic Syndr 33(2):125–133

    Article  PubMed  Google Scholar 

  7. Ascher MS, Sheppard HW (1988) AIDS as immune system activation: a model for pathogenesis. Clin Exp Immunol 73:165

    PubMed  CAS  Google Scholar 

  8. Barouch DH et al (2003) Viral escape from dominant simian immunodeficiency virus epitope-specific cytotoxic T-lymphocytes in DNA-vaccinated Rhesus monkeys. J Virol 77:7367–7375

    Article  PubMed  CAS  Google Scholar 

  9. Bartlett MS (1956) Deterministic and stochastic models for recurrent epidemics. In: Proceedings of the 3rd Berkeley symposium on mathematical statistics and probability, vol 4. University of California Press, Berkeley, pp 81–109

    Google Scholar 

  10. Becker NG (1973) Interactions between species: some comparisons between deterministic and stochastic models. Rocky Mt J Math 3(1):53–68

    Article  Google Scholar 

  11. Betts MR, Ambrozak DR, Douek DC et al (2001) Analysis of total human immunodeficiency virus(HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infections. J Virol 75:11983–11991

    Article  PubMed  CAS  Google Scholar 

  12. Betts MR, Exley B, Price DA, Bansal A, Camacho ZT, Teaberry V, West SM, Ambrozak DR, Tomaras G, Roederer M, Kilby JM, Tartaglia J, Belshe R, Gao F, Douek DC, Weinhold KJ, Koup RA, Goepfert P, Ferrari G (2005) Characterization of functional and phenotypic changes in anti-Gag vaccine-induced T cell responses and their role in protection after HIV-1 infection. Proc Natl Acad Sci USA 102(12):4512–4517

    Article  PubMed  CAS  Google Scholar 

  13. Betts MR, Krowka JF, Kepler TB, Davidian M, Christopherson C, Kwok S, Louie L, Eron J, Sheppard H, Frelinger JA (1999) Human immunodeficiency virus type 1-specific cytotoxic T lymphocyte activity is inversely correlated with HIV type 1 viral load in HIV type 1-infected long-term survivors. AIDS Res Hum Retroviruses 15(13):1219–1228

    Article  PubMed  CAS  Google Scholar 

  14. Betts MR, Nason MC, West SM et al (2006) HIV nonprogressors preferentially maintain functional HIV-specific CD8+ T cells. Blood 107:4781–4789

    Article  PubMed  CAS  Google Scholar 

  15. Boritz E, Palmer BE, Wilson CC (2004) Human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells that proliferate in vitro detected in samples from most viremic subjects and inversely associated with plasma HIV-1 levels. J Virol 78:12638–12646

    Article  PubMed  CAS  Google Scholar 

  16. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB (1994) Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 68:6103–6110

    PubMed  CAS  Google Scholar 

  17. Brenchley JM, Price DA, Douek DC (2006) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7:235–239

    Article  PubMed  CAS  Google Scholar 

  18. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, Blazar BR, Rodriguez B, Teixeira-Johnson L, Landay A, Martin JN, Hecht FM, Picker LJ, Lederman MM, Deeks SG, Douek DC (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371

    Article  PubMed  CAS  Google Scholar 

  19. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, Nguyen PL, Khoruts A, Larson M, Haase AT, Douek DC (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200(6):749–759

    Article  PubMed  CAS  Google Scholar 

  20. Brodie SJ, Lewinsohn DA, Patterson BK, Jiymmapa D, Krieger J, Corey L, Greenberg PD, Riddell SR (1999) In vivo migration and function of transferred HIV-1 specific cytotoxic T cells. Nat Med 5:34–41

    Article  PubMed  CAS  Google Scholar 

  21. Brumme Z, Carlson J, Brumme C et al (2007) Longitudinal evaluation of HLA class-I mediated evolution in HIV-1 pol and nef in the first two years of infection: a multicenter study. Abstract OA09-02, AIDS vaccine 2007, Seattle, WA, USA, August 2007

    Google Scholar 

  22. Buseyne F, Le Chenadec J, Corre B, Porrot F, Burgard M, Rouzioux C, Blanche S, Mayaux MJ, Riviere Y (2002) Inverse correlation between memory Gag-specific cytotoxic T lymphocytes and viral replication in human immunodeficiency virus-infected children. J Infect Dis 186:1589–1596

    Article  PubMed  CAS  Google Scholar 

  23. Carrington M, O’Brien SJ (2003) The influence of HLA genotype on AIDS. Annu Rev Med 54:535–551

    Article  PubMed  CAS  Google Scholar 

  24. Chen Y, Webster RG, Woodland DL (1998) Induction of CD8+ T cells responses to dominant and subdominant epitopes and protective immunity to Sendai virus infection by DNA vaccination. J Immunol 160:2425–2432

    PubMed  CAS  Google Scholar 

  25. Chou CS, Ramilo O, Vitetta ES (1997) Highly purified CD25- resting T cells cannot be infected de novo with HIV-1. Proc Natl Acad Sci USA 94(4):1361–1365

    Article  PubMed  CAS  Google Scholar 

  26. Chouquet C, Autran B, Gomard E, Bouley JM, Calvez V, Katlama C, Costagliola D, Riviere Y (2002) Correlation between breadth of memory HIV-specific cytotoxic T cells, viral load and disease progression in HIV infection. AIDS 16:2399–2407

    Article  PubMed  CAS  Google Scholar 

  27. Christiansen FB, Otto SP, Bergman A, Feldman MW (1998) Waiting with and without recombination: the time to production of a double mutant. Theor Popul Biol 53:199–215

    Article  PubMed  CAS  Google Scholar 

  28. Coffin JM (1995) HIV dynamics in vivo:implications for genetic variation, pathogenesis, and therapy. Science 267:483–489

    Google Scholar 

  29. Crowe S, Mills J (1988) The future of antiviral chemotherapy. Dermatol Clin 6(4):521–537

    PubMed  CAS  Google Scholar 

  30. Dalod M, Dupuis M, Deschemin JC, Sicard D, Salmon D, Delfraissy JF, Venet A, Sinet M, Guillet JG (1999) Broad, intense anti-human immunodeficiency virus (HIV) ex vivo CD8(+) responses in HIV type 1-infected patients: comparison with anti-Epstein-Barr virus responses and changes during antiretroviral therapy. J Virol 73:7108–7116

    PubMed  CAS  Google Scholar 

  31. Davenport MP, Petravic J (2010) CD8+ T cell control of HIV: a known unknown. PLoS Pathog e1000728. doi:10.1371/journal.ppat.1000728

    Google Scholar 

  32. De Boer RJ, Mohri H, Ho DD, Perelson AS (2003) Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques. J Immunol 170(5):2479–2487

    PubMed  Google Scholar 

  33. DeGrutolla V, Seage GH, Mayer KH, Horsburgh CH Jr (1989) Infectiousness of HIV between male homosexual partners. J Clin Med 42:849–856

    Google Scholar 

  34. de Oliveira T, Salemi M, Gordon M, Vandamme A-M, van Rensburg E et al (2004) Mapping sites of positive selection of amino acid diversification in the HIV genome: an alternative approach to vaccine design? Genetics 167:1047–1058

    Article  PubMed  CAS  Google Scholar 

  35. Diekmann U, Law R (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34:579–612

    Article  Google Scholar 

  36. Edwards BH, Bansal A, Sabbaj S et al (2002) Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol 76:2298–2305

    Article  PubMed  CAS  Google Scholar 

  37. Ellenberger D, Otten RA, Li B, Aidoo M, Rodriguez IV, Sariol CA, Martinez M, Monsour M, Wyatt L, Hudgens MG, Kraiselburd E, Moss B, Robinson H, Folks T, Butera S (2006) HIV-1 DNA/MVA vaccination reduces the per exposure probability of infection during repeated mucosal SHIV challenges. Virology 352:216–225

    Article  PubMed  CAS  Google Scholar 

  38. Eshell I, Feldman MW (1984) Initial increase of new mutants and some continuity properties of ESS in two locus systems. Am Nat 124:631–640

    Article  Google Scholar 

  39. Ewens WJ (2004) Mathematical population genetics. I. Theoretical introduction, 2nd edn. Springer, New York

    Google Scholar 

  40. Feeney ME, Tang Y, Roosevelt KA, Leslie AJ, McIntosh K, Karthas N, Walker BD, Goulder PJ (2004) Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-B27-positive long-term-nonprogressing child. J Virol 78(16):8927–8930

    Article  PubMed  CAS  Google Scholar 

  41. Finzi D, Siliciano RF (1998) Viral dynamics in HIV-1 infection. Cell 93(5):665–671

    Article  PubMed  CAS  Google Scholar 

  42. Fisher RA The genetical theory of natural selection. a complete variorum edition. Oxford Press, London; “a facsimile of the original 1930 edition with footnotes added showing where changes were made in 1958”

    Google Scholar 

  43. Fisher RA (1936) The measurement of selective intensity. Proc Roy Soc B 121:58–62

    Google Scholar 

  44. Ford EB (1964) Ecological genetics. Wiley, NY

    Google Scholar 

  45. Frahm N, Korber BT, Adams CM, Szinger JJ, Draenert R, Addo MM, Feeney ME, Yusim K, Sango K, Brown NV, SenGupta D, Piechocka-Trocha A, Simonis T, Marincola FM, Wurcel AG, Stone DR, Russell CJ, Adolf P, Cohen D, Roach T, StJohn A, Khatri A, Davis K, Mullins J, Goulder PJ, Walker BD, Brander C (2004) Consistent cytotoxic-T-lymphocyte targeting of immunodominant regions in human immunodeficiency virus across multiple ethnicities. J Virol 78:2187–2200

    Article  PubMed  CAS  Google Scholar 

  46. Gallo RC, Montagnier L (2003) The discovery of HIV as the cause of AIDS. N Engl J Med 349(24):2283–2285

    Article  PubMed  CAS  Google Scholar 

  47. Gea-Banacloche JC, Migueles SA, Martino L et al (2000) Maintence of large numbers of virus-specific CD8+ T-cells in HIV-infected progressors and long-term nonprogressors. J Immunol 165:1082–1092

    PubMed  CAS  Google Scholar 

  48. Geldmacher C, Currier JR, Herrmann E, Haule A, Kuta E, McCutchan F, Njovu L, Geis S, Hoffmann O, Maboko L, Williamson C, Birx D, Meyerhans A, Cox J, Hoelscher M (2007) CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients. J Virol 81(5):2440–2448

    Article  PubMed  CAS  Google Scholar 

  49. Gleich J (1987) Chaos: making a new science. Penguin Books, New York

    Google Scholar 

  50. Goulder PJ, Phillips RE, Colbert RA, McAdam S, Ogg G, Nowak MA, Giangrande P, Luzzi G, Morgan B, Edwards A, McMichael AJ, Rowland-Jones S (1997) Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 3:212–217

    Article  PubMed  CAS  Google Scholar 

  51. Gray RH, Wawer MJ, Brookmeyer R, Sewankambo NK, Serwadda D et al, Rakai Project Team (2001) Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 357: 1149–1153

    Article  Google Scholar 

  52. Greenough TC, Brettler DB, Somasundaran M, Panicali DL, Sullivan JL (1997) Human immunodeficiency virus type 1-specific cytotoxic T lymphocytes (CTL), virus load, and CD4 T cell loss: evidence supporting a protective role for CTL in vivo. J Infect Dis 176:118–125

    Article  PubMed  CAS  Google Scholar 

  53. Grivel JC, Margolis LB (1999) CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nat Med 5(3):344–346. Comment in: Nat Med 5(6):592–593

    Google Scholar 

  54. Hofbauer J, Sigmund K (1988) The theory of evolution and dynamical systems. Cambridge University Press, Cambridge

    Google Scholar 

  55. Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A, Dandekar S (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 77(21):11708–11717

    Article  PubMed  CAS  Google Scholar 

  56. Haase AT, Henry K, Zupancic M et al (1996) Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274:985–989

    Article  PubMed  CAS  Google Scholar 

  57. Harper ME, Marselle LM, Gallo RC et al (1986) Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci USA 83:772–776

    Article  PubMed  CAS  Google Scholar 

  58. Hazenberg MD, Stuart JW, Otto SA, Borleffs JC, Boucher CA, de Boer RJ, Miedema F, Hamann D (2000) T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95(1):249–255

    PubMed  CAS  Google Scholar 

  59. Hermankova M, Siliciano JD, Zhou Y, Monie D, Chadwick K, Margolick JB, Quinn TC, Siliciano RF (2003) Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J Virol 77(13):7383–7392

    Article  PubMed  CAS  Google Scholar 

  60. Hessol NA, Anastos K, Levine AM, Ameli N, Cohen M, Young M, Augenbraun M, Miotti P, Gange SJ (2000) Factors associated with incident self-reported AIDS among women enrolled in the women’s interagency HIV study (WIHS). WIHS Collaboratorive Study Group. AIDS Res Hum Retroviruses 16:1105–1111

    Article  PubMed  CAS  Google Scholar 

  61. Ho D et al (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126

    Article  PubMed  CAS  Google Scholar 

  62. Honeyborne I, Prendergast A, Pereyra F, Leslie A, Crawford H, Payne R, Reddy S, Bishop K, Moodley E, Nair K, van der Stok M, McCarthy N, Rousseau CM, Addo M, Mullins JI, Brander C, Kiepiela P, Walker BD, Goulder PJ (2007) Control of human immunodeficiency virus type 1 is associated with HLA-B*13 and targeting of multiple gag-specific CD8+ T-cell epitopes. J Virol 81(7):3667–3672

    Article  PubMed  CAS  Google Scholar 

  63. Ibarrondo FJ, Anton PA, Fuerst M, Ng HL, Wong JT, Matud J, Elliott J, Shih R, Hausner MA, Price C, Hultin LE, Hultin PM, Jamieson BD, Yang OO (2005) Parallel human immunodeficiency virus type 1-specific CD8+ T-lymphocyte responses in blood and mucosa during chronic infection. J Virol 79(7):4289–4297

    Article  PubMed  CAS  Google Scholar 

  64. Jacquez JA, Koopman JS, Simon CP, Longini IM Jr (1994) Role of the primary infection in epidemics of HIV infection in gay cohorts. J Acquir Immune Defic Syndr 7:1169–1184

    PubMed  CAS  Google Scholar 

  65. Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A et al (1999) Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 189:991–998

    Article  PubMed  CAS  Google Scholar 

  66. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ (2004) HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199:283–293

    Article  PubMed  CAS  Google Scholar 

  67. Kaufmann DE, Bailey PM, Sidney J et al (2004) Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides. J Virol 78:4463–4477

    Article  PubMed  CAS  Google Scholar 

  68. Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JF, Sharp PM, Shaw GM, Peeters M, Hahn BH (2006) Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313(5786):523–526

    Article  PubMed  CAS  Google Scholar 

  69. Kelleher AD, Long C, Holmes EC, Allen RL, Wilson J, Conlon C, Workman C, Shaunak S, Olson K, Goulder P, Brander C, Ogg G, Sullivan JS, Dyer W, Jones I, McMichael AJ, Rowland-Jones S, Phillips RE (2001) Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J Exp Med 193:375–386

    Article  PubMed  CAS  Google Scholar 

  70. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S, Rathnavalu P, Moore C, Pfafferott KJ, Hilton L, Zimbwa P, Moore S, Allen T, Brander C, Addo MM, Altfeld M, James I, Mallal S, Bunce M, Barber LD, Szinger J, Day C, Klenerman P, Mullins J, Korber B, Coovadia HM, Walker BD, Goulder PJ (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432(7018):769–775

    Article  PubMed  CAS  Google Scholar 

  71. Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, Moodley E, Reddy S, de Pierres C, Mncube Z, Mkhwanazi N, Bishop K, van der Stok M, Nair K, Khan N, Crawford H, Payne R, Leslie A, Prado J, Prendergast A, Frater J, McCarthy N, Brander C, Learn GH, Nickle D, Rousseau C, Coovadia H, Mullins JI, Heckerman D, Walker BD, Goulder P (2007) CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 13(1):46–53

    Article  PubMed  CAS  Google Scholar 

  72. Kimura M (1983) Neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  73. Klatt NR, Shudo EO, Engram AM et al (2010) CD8+ lymphocytes control viral replication in SIVmac239-infected Rhesus Macaques without decreasing the lifespan of productively infected cells. PLoS Pathog 1(6):e1000747. doi:10.1371/journal.ppat.1000747

    Article  CAS  Google Scholar 

  74. Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W, Farthing C, Ho DD (1994) Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68:4650–4655

    PubMed  CAS  Google Scholar 

  75. Kretzschmar M, Morris M (1996) Measures of concurrency in networks and the spread of infectious disease. Math Biosci 133:165–195

    Article  PubMed  CAS  Google Scholar 

  76. Leigh-Brown AJ (1997) Analysis of HIV-1 env gene sequences reveals evidence for a low effective number in the viral population. Proc. Nat. Acad. Science USA 94:1862–1865

    Article  Google Scholar 

  77. Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, Reilly C, Carlis J, Miller CJ, Haase AT (2005) Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434(7037):1148–1152

    PubMed  CAS  Google Scholar 

  78. Lichterfeld M, Kaufmann DE, Yu XG et al (2004) Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J Exp Med 200:701–712

    Article  PubMed  CAS  Google Scholar 

  79. Liu J, Roederer M (2007) Differential susceptibility of leukocyte subsets to cytotoxic T cell killing: implications for HIV immunopathogenesis. Cytometry A 71(2):94–104

    PubMed  Google Scholar 

  80. Liu Y, McNevin J, Cao J, Zhao H, Genowati I, Wong K, McLaughlin S, McSweyn MD, Diem K, Stevens CE, Maenza J, He H, Nickle DC, Shriner D, Holte SE, Collier AC, Corey L, McElrath MJ, Mullins JI (2006) Selection on the human immunodeficiency virus type 1 proteome following primary infection. J Virol 80(19):9519–9529

    Article  PubMed  CAS  Google Scholar 

  81. Liu Y, Mullins JI, Mittler JE (2006) Waiting times before the appearance of cytotoxic T-lymphocyte escape mutants in chronic HIV infection. Virology 347:140–146

    Article  PubMed  CAS  Google Scholar 

  82. Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted by the fidelity of purified reverse transcriptase. J Virol 69:5087–5094

    PubMed  CAS  Google Scholar 

  83. Martin M (2007) How useful are SIV/SHIV models as surrogates for HIV infections in man? Talk delivered at SBRI, Seattle, 1 November 2007

    Google Scholar 

  84. Martinez-Picado J, Prado JG, Fry EE et al (2006) Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J Virol 80:3617–3623

    Article  PubMed  CAS  Google Scholar 

  85. Masemola A, Mashishi T, Khoury G et al (2004) Hierarchichal targeting of subtype C human immunodeficiency virus type 1 proteins by CD8+ T-cells: correlation with viral load. J Virol 78:3233–3243

    Article  PubMed  CAS  Google Scholar 

  86. Matano T, Shibata R, Siemon C, Connors M, Lane HC, Martin MA (1998) Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infection in rhesus macaques. J Virol 72:164–169

    PubMed  CAS  Google Scholar 

  87. Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434:1093–1097

    Article  PubMed  CAS  Google Scholar 

  88. May RM, Leonard WJ (1979) Nonlinear aspects of competition between two species. SIAM J Appl Math 29(2):243–253

    Article  Google Scholar 

  89. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  Google Scholar 

  90. McDermott AB, Mitchen J, Piaskowski S, De Souza I, Yant LJ et al (2004) Repeated low-dose mucosal simian immunodeficiency virus SIVmac239 challenge results in the same viral and immunological kinetics as high-dose challenge: a model for the evaluation of vaccine efficacy in nonhuman primates. J Virol 78:3140–3144

    Article  PubMed  CAS  Google Scholar 

  91. McElrath MJ, Rabin M, Hoffman M, Klucking S, Garcia JV, Greenberg PD (1994) Evaluation of human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte responses utilizing B-lymphoblastoid cell lines transduced with the CD4 gene and infected with HIV-1. J Virol 68:5074–5083

    PubMed  CAS  Google Scholar 

  92. Mellors JW et al (1996) Prognosis in HIV-1 infection predicted by quantity of virus in plasma. Science 272:1167–1170

    Article  PubMed  CAS  Google Scholar 

  93. Migueles SA, Connors M (2001) Frequency and function of HIV-specific CD8(+) T cells. Immunol Lett 79:141–150

    Article  PubMed  CAS  Google Scholar 

  94. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martino L, Hallahan CW, Selig SM, Schwartz D, Sullivan J, Connors M (2000) HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci USA 97(6):9–14

    Article  Google Scholar 

  95. Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA (2002) Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296(5572):1439–1443

    Article  PubMed  CAS  Google Scholar 

  96. Moran PAP (1964) On the nonexistence of adaptive topographies. Ann Hum Gen 27:383–393

    Article  CAS  Google Scholar 

  97. Mullins JI, Jensen MA (2006) Evolutionary dynamics of HIV-1 and the control of AIDS. Curr Top Microbiol Immunol 299:171–192

    Article  PubMed  CAS  Google Scholar 

  98. Musey L, Ding Y, Cao J, Lee J, Galloway C, Yuen A, Jerome KR, McElrath MJ (2003) Ontogeny and specificities of mucosal and blood human immunodeficiency virus type 1-specific CD8(+) cytotoxic T lymphocytes. J Virol 77(1):291–300

    Article  PubMed  CAS  Google Scholar 

  99. Novitsky V, Gilbert P, Peter T, McLane MF, Gaolekwe S, Rybak N, Thior I, Ndung’u T, Marlink R, Lee TH, Essex M (2003) Association between virus-specific T-cell responses and plasma viral load in HIV-1 subtype C infection. J Virol 77:882–890

    Article  PubMed  CAS  Google Scholar 

  100. Ogg GS, Jin X, Bonhoeffer S et al (1998) Quantitation of HIV-1 specific cytotoxic T-lymphocytes and plasma load of viral RNA. Science 279:2103–2106

    Article  PubMed  CAS  Google Scholar 

  101. Okoye A, Meier-Schellersheim M, Brenchley JM, Hagen SI, Walker JM, Rohankhedkar M, Lum R, Edgar JB, Planer SL, Legasse A, Sylwester AW, Piatak M Jr, Lifson JD, Maino VC, Sodora DL, Douek DC, Axthelm MK, Grossman Z, Picker LJ (2007) Progressive CD4+ central memory T cell decline results in CD4+ effector memory insufficiency and overt disease in chronic SIV infection. J Exp Med 204(9):2171–2185

    Article  PubMed  CAS  Google Scholar 

  102. Olinger GG, Bailey MA, Dye JM, Bakken R, Kuehne A et al (2005) Protective cytotoxic T-cell responses induced by venezuelan equine encephalitis virus replicons expressing ebola virus proteins. J Virol 79:14189–14196

    Article  PubMed  CAS  Google Scholar 

  103. Otten RA, Adams DR, Kim CN, Jackson E, Pullium JK et al (2005) Multiple vaginal exposures to low doses of R5 Simian-Human immunodeficiency virus: strategy to study HIV preclinical interventions in nonhuman primates. J Infect Dis 191:164–173

    Article  PubMed  Google Scholar 

  104. Paiardini M, Cervasi B, Sumpter B, McClure HM, Sodora DL, Magnani M, Staprans SI, Piedimonte G, Silvestri G (2006) Perturbations of cell cycle control in T cells contribute to the different outcomes of simian immunodeficiency virus infection in rhesus macaques and sooty mangabeys. J Virol 80(2):634–642

    Article  PubMed  CAS  Google Scholar 

  105. Pantaleo G, Fauci AS (1993) HIV-1 infection in the lymphoid organs: a model for disease development. J NIH Res 5:68

    Google Scholar 

  106. Pantaleo G, Koup RA (2004) Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med 10:806–810

    Article  PubMed  CAS  Google Scholar 

  107. Pearson K (1892) The grammer of science. London and Black

    Google Scholar 

  108. Penn ML, Grivel JC, Schramm B, Goldsmith MA, Margolis L (1999) CXCR4 utilization is sufficient to trigger CD4+ T cell depletion in HIV-1-infected human lymphoid tissue. Proc Natl Acad Sci USA 96(2):663–668

    Article  PubMed  CAS  Google Scholar 

  109. Perelson AS, Neumann AU, Markowitz M et al (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586

    Article  PubMed  CAS  Google Scholar 

  110. Phillips AN (1996) Reduction of HIV infection during acute infection: independence from a specific immune response. Science 272:1960–1962

    Article  Google Scholar 

  111. Phillips RE, Rowland-Jones S, Nixon DF, Gotch FM, Edwards JP, Ogunlesi AO, Elvin JG, Rothbard JA, Bangham CR, Rizza CR et al (1991) Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354(6353):453–459

    Article  PubMed  CAS  Google Scholar 

  112. Picker LJ (2006) Immunopathogenesis of acute AIDS virus infection. Curr Opin Immunol 18(4):399–405

    Article  PubMed  CAS  Google Scholar 

  113. Picker LJ, Hagen SI, Lum R, Reed-Inderbitzin EF, Daly LM, Sylwester AW, Walker JM, Siess DC, Piatak M Jr, Wang C, Allison DB, Maino VC, Lifson JD, Kodama T, Axthelm MK (2004) Insufficient production and tissue delivery of CD4+ memory T cells in rapidly progressive simian immunodeficiency virus infection. J Exp Med 200(10):1299–1314

    Article  PubMed  CAS  Google Scholar 

  114. Piguet V, Sattentau Q (2004) Dangerous liaisons at the virological synapse. J Clin Invest 114:605–610

    PubMed  CAS  Google Scholar 

  115. Pontesilli O, Klein MR, Kerkhof-Garde SR, Pakker NG, de Wolf F, Schuitemaker H, Miedema F (1998) Longitudinal analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte responses: a predominant gag-specific response is associated with nonprogressive infection. J Infect Dis 178:1008–1018

    Article  PubMed  CAS  Google Scholar 

  116. Logic der Forschung. Julius Springer, Vienna (1935); English translation in The Logic of Scientifc Discovery. Hutchinson, London (1959)

    Google Scholar 

  117. Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C et al (2000) Viral load and heterosexual transmission of human immunodeficiency virus type 1. New Engl J Med 342:921–929

    Article  PubMed  CAS  Google Scholar 

  118. Rapatski BL, Suppe F, Yorke JA (2006) Reconciling different infectivity estimates for HIV-1. J Acquir Immune Defic Syndr 43:253–256

    Article  PubMed  Google Scholar 

  119. Reeves JD, Doms RW (2002) Human immunodeficiency virus type 2. J Gen Virol 83(Pt 6):1253–1265

    PubMed  CAS  Google Scholar 

  120. Regoes RR, Longini IM, Feinberg MB, Staprans SI (2005) Preclinical assessment of HIV vaccines and microbicides by repeated low-dose virus challenges. PLoS Med 2:e249

    Article  PubMed  Google Scholar 

  121. Reynolds MR, Rakasz E, Skinner PJ, White C, Abel K, Ma ZM, Compton L, Napoé G, Wilson N, Miller CJ, Haase A, Watkins DI (2005) CD8+ T-lymphocyte response to major immunodominant epitopes after vaginal exposure to simian immunodeficiency virus: too late and too little. J Virol 79(14):9228–9235

    Article  PubMed  CAS  Google Scholar 

  122. Richman DD, Wrin T, Little SJ, Petropoulos CJ (2003) Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci USA 100(7):4144–4149

    Article  PubMed  CAS  Google Scholar 

  123. Rolland M, Heckerman D, Deng W, Rousseau CM, Coovadia H, Bishop K, Goulder PJ, Walker BD, Brander C, Mullins JI (2008) Broad and Gag-biased HIV-1 epitope repertoires are associated with lower viral loads. PLoS ONE 3:e1424

    Article  PubMed  CAS  Google Scholar 

  124. Rosenzweig M, DeMaria MA, Harper DM, Friedrich S, Jain RK, Johnson RP (1998) Increased rates of CD4(+) and CD8(+) T lymphocyte turnover in simian immunodeficiency virus-infected macaques. Proc Natl Acad Sci USA 95(11):6388–6393

    Article  PubMed  CAS  Google Scholar 

  125. Rouzine IM, Rodrigo A, Coffin JM (2001) Transition between stochastic evolution and deterministic evolution in the presence of selection: general theory and application to virology. Microbiol Mol Biol Rev 151–185

    Google Scholar 

  126. Rouzine IM, Coffin JM (1999) Linkage disequilibrium test implies a large effective population number for HIV in vivo. Proc Natl Acad USA 96:10758–10763

    Article  CAS  Google Scholar 

  127. Saah AJ, Hoover DR, Weng S, Carrington M, Mellors J, Rinaldo CR Jr, Mann D, Apple R, Phair JP, Detels R, O’Brien S, Enger C, Johnson P, Kaslow RA (1998) Association of HLA profiles with early plasma viral load, CD4+ cell count and rate of progression to AIDS following acute HIV-1 infection. Multicenter AIDS Cohort Study. AIDS 12(16):2107–2113

    CAS  Google Scholar 

  128. Sacha JB, Chung C, Rakasz EG, Spencer SP, Jonas AK, Bean AT, Lee W, Burwitz BJ, Stephany JJ, Loffredo JT, Allison DB, Adnan S, Hoji A, Wilson NA, Friedrich TC, Lifson JD, Yang OO, Watkins DI (2007) Gag-specific CD8+ T lymphocytes recognize infected cells before AIDS-virus integration and viral protein expression. J Immunol 178:2746–2754

    PubMed  CAS  Google Scholar 

  129. Schmitz JE, Johnson RP, McClure HM, Manson KH, Wyand MS et al (2005) Effect of CD8+ lymphocyte depletion on virus containment after simian immunodeficiency virus SIVmac251 challenge of live attenuated SIVmac239delta3-vaccinated rhesus macaques. J Virol 79:8131–8141

    Article  PubMed  CAS  Google Scholar 

  130. Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA (1999) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 238:857–860

    Article  Google Scholar 

  131. Scott-Algara D, Buseyne F, Porrot F, Corre B, Bellal N, Rouzioux C, Blanche S, Riviere Y (2005) Not all Tetramer binding CD8(+) T cells can produce cytokines and chemokines involved in the effector functions of virus-specific CD8(+) T lymphocytes in HIV-1 infected children. J Clin Immunol 25:57–67

    Article  PubMed  CAS  Google Scholar 

  132. Shriner D, Shankarappa R, Jensen AA, Nickel DC, Mittler JE et al (2004) Influence of random genetic drift on human immunodeficiency virus type 1 env evolution during chronic infection. Genetics 166:1155–1164

    Article  PubMed  CAS  Google Scholar 

  133. Smale S (1976) On the differential equations of species in competition. Math Biol 3:5–7

    Article  CAS  Google Scholar 

  134. Sopper S, Nierwetberg D, Halbach A, Sauer U, Scheller C, Stahl-Hennig C, Mätz-Rensing K, Schäfer F, Schneider T, ter Meulen V, Müller JG (2003) Impact of simian immunodeficiency virus (SIV) infection on lymphocyte numbers and T-cell turnover in different organs of rhesus monkeys. Blood 101(4):1213–1219

    Article  PubMed  CAS  Google Scholar 

  135. Sopper S, Sauer U, Muller JG, Stahl-Hennig C, ter Meulen V (2000) Early activation and proliferation of T cells in simian immunodeficiency virus-infected rhesus monkeys. AIDS Res Hum Retroviruses 16(7):689–697

    Article  PubMed  CAS  Google Scholar 

  136. Spina CA, Guatelli JC, Richman DD (1995) Establishment of a stable, inducible form of human immunodeficiency virus type 1 DNA in quiescent CD4 lymphocytes in vitro. J Virol 69(5):2977–2988

    PubMed  CAS  Google Scholar 

  137. Stafford MA, Corey L, Cao Y et al (2000) Modeling plasma virus concentration during primary HIV infection. J Theor Biol 203:285–231

    Article  PubMed  CAS  Google Scholar 

  138. Stebbing J, Gazzard B, Douek DC (2004) Where does HIV live? N Engl J Med 350(18):1872–1880

    Article  PubMed  CAS  Google Scholar 

  139. Streeck H, Lichterfeld M, Alter G, Meier A, Teigen N, Yassine-Diab B, Sidhu HK, Little S, Kelleher A, Routy JP, Rosenberg ES, Sekaly RP, Walker BD, Altfeld M (2007) Recognition of a defined region within p24 gag by CD8+ T cells during primary human immunodeficiency virus type 1 infection in individuals expressing protective HLA class I alleles. J Virol 81(14):7725–7731

    Article  PubMed  CAS  Google Scholar 

  140. Subbarao S, Otten RA, Ramos A, Kim C, Jackson E, Monsour M, Adams DR, Bashirian S, Johnson J, Soriano V, Rendon A, Hudgens MG, Butera S, Janssen R, Paxton L, Greenberg AE, Folks TM (2006) Chemoprophylaxis with tenofovir disoproxil fumarate provided partial protection against infection with simian human immunodeficiency virus in macaques given multiple virus challenges. J Infect Dis 194:904–911

    Article  PubMed  CAS  Google Scholar 

  141. Tang S, Patterson B, Levy JA (1995) Highly purified quiescent human peripheral blood CD4+ T cells are infectible by human immunodeficiency virus but do not release virus after activation. J Virol 69(9):5659–5665

    PubMed  CAS  Google Scholar 

  142. Van Heuverswyn F, Peeters M (2007) The origins of HIV and implications for the global epidemic. Curr Infect Dis Rep 9(4):338–346

    Article  PubMed  Google Scholar 

  143. Van Baalen CA, Schutten M, Huisman RC, Boers PH, Gruters RA, Osterhaus AD (1998) Kinetics of antiviral activity by human immunodeficiency virus type 1-specific cytotoxic T lymphocytes (CTL) and rapid selection of CTL escape virus in vitro. J Virol 72(8):6851–6857

    PubMed  Google Scholar 

  144. Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, Rosenzweig M, Johnson RP, Desrosiers RC, Lackner AA (1998) Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280:427–431

    Article  PubMed  CAS  Google Scholar 

  145. Vittinghoff E, Douglas J, Judson F, McKirnan D, MacQueen K, Buchbinder SP (1999) Per-contact risk of human immunodeficiency virus transmission between male sexual partners. Am J Epidemiol 150:306–311

    Article  PubMed  CAS  Google Scholar 

  146. Wade M (XXXX) Evolutionary genetics. In: The Stanford encyclopedia of philosophy (available online at plato.stanford.edu)

    Google Scholar 

  147. Watts CH, May RM (1992) The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math Biosci 108:89–104

    Article  PubMed  CAS  Google Scholar 

  148. Wei X et al (1996) Viral dynamics in human human immunodeficiency virus type 1 infection. Nature 373:117

    Article  Google Scholar 

  149. Wick D (1999) The disappearing CD4+ T cells in HIV infection: a case of over-stimulation? J Theor Biol 197:507–516

    Article  PubMed  CAS  Google Scholar 

  150. Wick D (1999) On T-cell dynamics and the hyperactivation theory of AIDS pathogenesis. Math Biosci 158:127–144

    Article  PubMed  CAS  Google Scholar 

  151. Wick D, Self SG (1997) Estimating disease attack rates in heterogeneous interacting populations, with applications to HIV vaccine trials. Ann Stat 25:642–661

    Article  Google Scholar 

  152. Wick D, Self SG (2000) Early HIV infection In vivo: branching-process model for studying timing of immune responses and drug therapy. Math Biosci 165:115–134

    Article  PubMed  CAS  Google Scholar 

  153. Wick D, Self SG, Corey L (2002) Do scarce targets or T killers control primary HIV infection? J Theor Biol 214:209–214

    Article  PubMed  Google Scholar 

  154. Wick D, Self SG (2005) How fast can HIV escape from immune control? In: Tan W-Y, Wu H (eds) Deterministic and stochastic models of AIDS epidemics and HIV infections with intervention. World Scientific, Singapore

    Google Scholar 

  155. Wick WD (2008) On modeling the effects of T-cell vaccines on HIV acquisition and disease. Stat Med 27(23):4805–4816. doi:10.1002/sim.3198

    Article  PubMed  Google Scholar 

  156. Wick WD, Gilbert PB, Self SG (2006) On modeling HIV and T cells in vivo: assessing casual estimators in vaccine trials. PLoS Comput Biol 2(6). dx.doi.org/10.1371/journal.pcbi.0020064

    Google Scholar 

  157. Wick WD, Yang OO (2012) Biologically-directed modeling reflects cytolytic clearance of SIV-infected cells in vivo in macaques. PLoS One 7(9):e44778. doi:10.1371/journal.pone.0044778

    Article  PubMed  CAS  Google Scholar 

  158. Wilson NA, Keele BF, Reed JS et al (2009) Vaccine-induced cellular responses control simian immunodeficiency virus replication after heterologous challenge. J Virol 83:6508–6521

    Article  PubMed  CAS  Google Scholar 

  159. Wong JK, Strain MC, Porrata RR et al (2010) In vivo CD8+ T-cell suppression of SIV viremia is not mediated by CTL clearance of productively infected cells. PLoS Pathog e1000748. doi:10.1371/journal.ppat.1000748

    Google Scholar 

  160. Wu R, Owen GC, Liu T, Shen GQ, Morris RI (2005) Significance of the detection of HIV-1 gag- and/or pol-CD8/A2 T-lymphocytes in HIV-patients. Immunol Lett 98:73–81

    Article  PubMed  CAS  Google Scholar 

  161. Yamashita M, Emerman M (2006) Retroviral infection of non-dividing cells: old and new perspectives. Virology 344(1):88–93

    Article  PubMed  CAS  Google Scholar 

  162. Yang OO, Kalams SA, Rosenzweig M, Trocha A, Jones N, Koziel M, Walker BD, Johnson RP (1996) Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. J Virol 70:5799–5806

    PubMed  CAS  Google Scholar 

  163. Yang OO, Sarkis PT, Ali A, Harlow JD, Brander C, Kalams SA, Walker BD (2003) Determinant of HIV-1 mutational escape from cytotoxic T lymphocytes. J Exp Med 197:1365–1375

    Article  PubMed  CAS  Google Scholar 

  164. Yang W, Bielawski JP, Yang Z (2003) Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J Mol Evol 57:212–221

    Article  PubMed  CAS  Google Scholar 

  165. Yang Z (2001) Maximum likelihood analysis of adaptive evolution in HIV-1 gp120 gene. Pac Symp Biocomput 2001:226–237

    Google Scholar 

  166. Young FE (1988) The role of the FDA in the effort against AIDS. Public Health Rep 103(3):242–245

    PubMed  CAS  Google Scholar 

  167. Zhang HW, Qiu ZF, Li TS (2004) HIV-1 nef specific cytotoxic T lymphocyte responses in long-term nonprogressors and AIDS patients. Zhonghua Yi Xue Za Zhi 84:1973–1976

    PubMed  CAS  Google Scholar 

  168. Zhang HW, Qiu ZF, Li TS (2004) Human immunodeficiency virus-1 gag specific CD(8)(+) T cell responses in long-term nonprogressors and acquired immunodeficiency syndrome patients. Zhonghua Nei Ke Za Zhi 43:911–914

    PubMed  CAS  Google Scholar 

  169. Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, Reinhart TA, Rogan M, Cavert W, Miller CJ, Veazey RS, Notermans D, Little S, Danner SA, Richman DD, Havlir D, Wong J, Jordan HL, Schacker TW, Racz P, Tenner-Racz K, Letvin NL, Wolinsky S, Haase AT (1999) Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286(5443):1353–1357

    Article  PubMed  CAS  Google Scholar 

  170. Zhou Y, Zhang H, Siliciano JD, Siliciano RF (2005) Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol 79(4):2199–2210

    Article  PubMed  CAS  Google Scholar 

  171. Zuniga R, Lucchetti A, Galvan P, Sanchez S, Sanchez C, Hernandez A, Sanchez H, Frahm N, Linde CH, Hewitt HS, Hildebrand W, Altfeld M, Allen TM, Walker BD, Korber BT, Leitner T, Sanchez J, Brander C (2006) Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J Virol 80(6):3122–3125

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wick, W.D., Yang, O.O. (2013). Introduction. In: War in the Body. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7294-0_1

Download citation

Publish with us

Policies and ethics