Skip to main content

Conformational Dynamics of Reverse Transcription

  • Chapter
  • First Online:
  • 1105 Accesses

Abstract

Synthesis of double-stranded DNA from the retrovirus (+)-strand RNA genome is a multi-step process catalyzed by the virus-coded reverse transcriptase (RT), using a combination of synthetic (RNA- and DNA-dependent DNA synthesis) and degradative activities (ribonuclease H, or RNase H). For human immunodeficiency virus type 1 (HIV-1) RT, the two-subunit p66/p51 heterodimer must accommodate a variety of conformationally distinct nucleic acid substrates, including duplex RNA, RNA/DNA hybrids duplex DNA, and RNA-DNA chimeras to complete this process (Telesnitsky and Goff 1997). Despite a wealth of structural and biochemical studies, the mechanism whereby RT adopts different orientations to coordinate its DNA polymerase and RNase H activities has remained elusive. The lower processivity of HIV-1 RT (Bibillo and Eickbush 2002) also raises the issue of polymerization site targeting when the enzyme re-engages its nucleic acid substrate distal from the primer terminus. Although X-ray crystallography has contributed significantly to our understanding of reverse transcription complexes and resistance to antiviral drugs, it provides a static picture, revealing few details regarding motion of the enzyme on its substrate. In contrast, single-molecule spectroscopy has proven an invaluable tool capable of resolving static and dynamic heterogeneity of an ensemble (Lu et al. 1998; Moerner and Orrit 1999; Weiss 2000). In an early study, (Rothwell et al. 2003) used a fluorescence resonance energy transfer (FRET) approach to distinguish three structurally distinct HIV-1 RT species, including one form where nucleic acid was positioned to permit nucleotide incorporation and a second corresponding to a nucleoprotein complex formed following nucleotide addition but prior to translocation. However, since this seminal study, little progress has been made in dissection of the conformational dynamics of reverse transcription. Progress in these areas and the implications for investigational and established inhibitors that interfere with HIV-1 RT function will be reviewed here.

Conflict of interest statement: None declared

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Cy3:

Cyanine 3

Cy5:

Cyanine 5

ddNTP:

Dideoxynucleoside triphosphate

dNTP:

Deoxynucleoside triphosphate

FRET:

Fluorescence resonance energy transfer

HIV:

Human immunodeficiency virus

LTR:

Long terminal repeat

MLV:

Murine leukemia virus

NC:

Nucleocapsid protein

NNRTI:

Nonnucleoside RT inhibitor

PPT:

Polypurine tract

RSV:

Rous sarcoma virus

RT:

Reverse transcriptase

UTR:

Untranslated region

References

  • Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453(7192):184–189

    Article  PubMed  CAS  Google Scholar 

  • Basu VP, Song M, Gao L, Rigby ST, Hanson MN, Bambara RA (2008) Strand transfer events during HIV-1 reverse transcription. Virus Res 134(1–2):19–38

    Article  PubMed  CAS  Google Scholar 

  • Beerens N, Berkhout B (2002) The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription. J Virol 76(5):2329–2339

    Article  PubMed  CAS  Google Scholar 

  • Beerens N, Groot F, Berkhout B (2001) Initiation of HIV-1 reverse transcription is regulated by a primer activation signal. J Biol Chem 276(33):31247–31256

    Article  PubMed  CAS  Google Scholar 

  • Bibillo A, Eickbush TH (2002) High processivity of the reverse transcriptase from a non-long terminal repeat retrotransposon. J Biol Chem 277(38):34836–34845 [Research Support, U.S. Gov’t, P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Carpousis AJ, Gralla JD (1980) Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Biochemistry 19(14):3245–3253

    Article  PubMed  CAS  Google Scholar 

  • Chapman KB, Bystrom AS, Boeke JD (1992) Initiator methionine tRNA is essential for Ty1 transposition in yeast. Proc Natl Acad Sci USA 89(8):3236–3240

    Article  PubMed  CAS  Google Scholar 

  • Charneau P, Alizon M, Clavel F (1992) A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol 66(5):2814–2820 [Comparative Study Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  • Croxtall JD (2012) Etravirine: a review of its use in the management of treatment-experienced patients with HIV-1 infection. Drugs 72(6):847–869 [Review]

    Article  PubMed  CAS  Google Scholar 

  • Das K, Martinez SE, Bauman JD, Arnold E (2012) HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat Struct Mol Biol 19(2):253–259 [Research Support, N.I.H., Extramural]

    Article  PubMed  CAS  Google Scholar 

  • Dash C, Scarth BJ, Badorrek C, Gotte M, Le Grice SF (2008) Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids. Nucleic Acids Res 36(20):6363–6371 [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]

    Article  PubMed  CAS  Google Scholar 

  • Grobler JA, Dornadula G, Rice MR, Simcoe AL, Hazuda DJ, Miller MD (2007) HIV-1 reverse transcriptase plus-strand initiation exhibits preferential sensitivity to non-nucleoside reverse transcriptase inhibitors in vitro. J Biol Chem 282(11):8005–8010 [In Vitro]

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Wang J, Shalom A, Li Z, Khorchid A, Wainberg MA et al (1997) Primer tRNA3Lys on the viral genome exists in unextended and two-base extended forms within mature human immunodeficiency virus type 1. J Virol 71(1):726–728 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  • Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282(5394): 1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Huber HE, McCoy JM, Seehra JS, Richardson CC (1989) Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching. J Biol Chem 264(8):4669–4678 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    PubMed  CAS  Google Scholar 

  • Isel C, Ehresmann C, Keith G, Ehresmann B, Marquet R (1995) Initiation of reverse transcription of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3Lys) (template/primer). J Mol Biol 247(2):236–250

    Article  PubMed  CAS  Google Scholar 

  • Isel C, Westhof E, Massire C, Le Grice SF, Ehresmann B, Ehresmann C et al (1999) Structural basis for the specificity of the initiation of HIV-1 reverse transcription. EMBO J 18(4):1038–1048

    Article  PubMed  CAS  Google Scholar 

  • Jacobo-Molina A, Ding J, Nanni RG, Clark AD Jr, Lu X, Tantillo C et al (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 a resolution shows bent DNA. Proc Natl Acad Sci USA 90(13):6320–6324

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen MR, Haasnoot J, Wengel J, Berkhout B, Kjems J (2007) Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. Retrovirology 4:29 [Research Support, Non-U.S. Gov’t]

    Article  PubMed  Google Scholar 

  • Ji X, Klarmann GJ, Preston BD (1996) Effect of human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein on HIV-1 reverse transcriptase activity in vitro. Biochemistry 35(1):132–143 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Larson RG (2007) Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules. Nucleic Acids Res 35(11):3848–3858 [Research Support, U.S. Gov’t, Non-P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Schroeder CM, Xie XS (2010) Single-molecule study of DNA polymerization activity of HIV-1 reverse transcriptase on DNA templates. J Mol Biol 395(5):995–1006 [In Vitro Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    Article  PubMed  CAS  Google Scholar 

  • Lanchy JM, Ehresmann C, Le Grice SF, Ehresmann B, Marquet R (1996a) Binding and kinetic properties of HIV-1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription. EMBO J 15(24):7178–7187

    PubMed  CAS  Google Scholar 

  • Lanchy JM, Isel C, Ehresmann C, Marquet R, Ehresmann B (1996b) Structural and functional evidence that initiation and elongation of HIV-1 reverse transcription are distinct processes. Biochimie 78(11–12):1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Le Grice SF, Naas T, Wohlgensinger B, Schatz O (1991a) Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase. EMBO J 10(12):3905–3911

    PubMed  CAS  Google Scholar 

  • Le Grice SF, Panin M, Kalayjian RC, Richter NJ, Keith G, Darlix JL et al (1991b) Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase. J Virol 65(12):7004–7007 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    PubMed  CAS  Google Scholar 

  • Leis J (1993) Regulation of initiation of reverse transcription of retroviruses. In: Skalka AM, Goff SP (eds) Reverse transcriptase. Cold Spring Harbor Laboratory Press, Plainview, pp. 33–48

    Google Scholar 

  • Levin JG, Seidman JG (1979) Selective packaging of host tRNA’s by murine leukemia virus particles does not require genomic RNA. J Virol 29(1):328–335

    PubMed  CAS  Google Scholar 

  • Liu S, Abbondanzieri EA, Rausch JW, Le Grice SF, Zhuang X (2008) Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science 322(5904):1092–1097 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Harada BT, Miller JT, Le Grice SF, Zhuang X (2010) Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription. Nat Struct Mol Biol 17(12):1453–1460 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural]

    Article  PubMed  CAS  Google Scholar 

  • Lu HP, Xun L, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282(5395):1877–1882 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Metzger W, Hermann T, Schatz O, Le Grice SF, Heumann H (1993) Hydroxyl radical footprint analysis of human immunodeficiency virus reverse transcriptase-template.primer complexes. Proc Natl Acad Sci U S A 90(13):5909–5913 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Miller JT, Khvorova A, Scaringe SA, Le Grice SF (2004) Synthetic tRNALys, 3 as the replication primer for the HIV-1HXB2 and HIV-1Mal genomes. Nucleic Acids Res 32(15):4687–4695 [Comparative Study]

    Article  PubMed  CAS  Google Scholar 

  • Moerner WE, Orrit M (1999) Illuminating single molecules in condensed matter. Science 283(5408):1670–1676 [Research Support, U.S. Gov’t, Non-P.H.S. Review]

    Article  PubMed  CAS  Google Scholar 

  • Quan Y, Liang C, Inouye P, Wainberg MA (1998) Enhanced impairment of chain elongation by inhibitors of HIV reverse transcriptase in cell-free reactions yielding longer DNA products. Nucleic Acids Res 26(24):5692–5698

    Article  PubMed  CAS  Google Scholar 

  • Rausch JW, Le Grice SF (1997) Substituting a conserved residue of the ribonuclease H domain alters substrate hydrolysis by retroviral reverse transcriptase. J Biol Chem 272(13):8602–8610 [Research Support, U.S. Gov’t, P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Rausch JW, Le Grice SF (2004) ‘Binding, bending and bonding’: polypurine tract-primed initiation of plus-strand DNA synthesis in human immunodeficiency virus. Int J Biochem Cell Biol 36(9):1752–1766 [Review]

    Article  PubMed  CAS  Google Scholar 

  • Rausch JW, Le Grice SF (2007) Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis. Nucleic Acids Res 35(1):256–268 [Research Support, N.I.H., Intramural]

    Article  PubMed  CAS  Google Scholar 

  • Rausch JW, Grice MK, Henrietta M, Nymark M, Miller JT, Le Grice SF (2000a) Interaction of p55 reverse transcriptase from the Saccharomyces cerevisiae retrotransposon Ty3 with conformationally distinct nucleic acid duplexes. J Biol Chem 275(18):13879–13887 [Research Support, U.S. Gov’t, P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Rausch JW, Sathyanarayana BK, Bona MK, Le Grice SF (2000b) Probing contacts between the ribonuclease H domain of HIV-1 reverse transcriptase and nucleic acid by site-specific photocross-linking. J Biol Chem 275(21):16015–16022 [Research Support, U.S. Gov’t, P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Rodriguez L, Tsuchihashi Z, Fuentes GM, Bambara RA, Fay PJ (1995) Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitro. J Biol Chem 270(25):15005–15011 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Rothwell PJ, Berger S, Kensch O, Felekyan S, Antonik M, Wohrl BM et al (2003) Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase: primer/template complexes. Proc Natl Acad Sci U S A 100(4):1655–1660 [Research Support, Non-U.S. Gov’t]

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos SG, Das K, Tantillo C, Clark AD Jr, Ding J, Whitcomb JM et al (2001) Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA: DNA. EMBO J 20(6):1449–1461

    Article  PubMed  CAS  Google Scholar 

  • Tanese N, Goff SP (1988) Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities. Proc Natl Acad Sci U S A 85(6):1777–1781 [Research Support, U.S. Gov’t, P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Taylor JM, Illmensee R (1975) Site on the RNA of an avian sarcoma virus at which primer is bound. J Virol 16(3):553–558

    PubMed  CAS  Google Scholar 

  • Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Turner KB, Brinson RG, Yi-Brunozzi HY, Rausch JW, Miller JT, Le Grice SF et al (2008) Structural probing of the HIV-1 polypurine tract RNA: DNA hybrid using classic nucleic acid ligands. Nucleic Acids Res 36(8):2799–2810 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, U.S. Gov’t, Non-P.H.S.]

    Article  PubMed  CAS  Google Scholar 

  • Wagner J, Nohmi T (2000) Escherichia coli DNA polymerase IV mutator activity: genetic requirements and mutational specificity. J Bacteriol 182(16):4587–4595 [Research Support, Non-U.S. Gov’t]

    Article  PubMed  CAS  Google Scholar 

  • Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7(9):724–729 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]

    Article  PubMed  CAS  Google Scholar 

  • Wendeler M, Lee HF, Bermingham A, Miller JT, Chertov O, Bona MK et al (2008) Vinylogous ureas as a novel class of inhibitors of reverse transcriptase-associated ribonuclease H activity. ACS Chem Biol 3(10):635–644 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural]

    Article  PubMed  CAS  Google Scholar 

  • Whiting SH, Champoux JJ (1994) Strand displacement synthesis capability of Moloney murine leukemia virus reverse transcriptase. J Virol 68(8):4747–4758 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    PubMed  CAS  Google Scholar 

  • Williams KJ, Loeb LA, Fry M (1990) Synthesis of DNA by human immunodeficiency virus reverse transcriptase is preferentially blocked at template oligo(deoxyadenosine) tracts. J Biol Chem 265(30):18682–18689 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]

    PubMed  CAS  Google Scholar 

  • Wu W, Henderson LE, Copeland TD, Gorelick RJ, Bosche WJ, Rein A et al (1996) Human immunodeficiency virus type 1 nucleocapsid protein reduces reverse transcriptase pausing at a secondary structure near the murine leukemia virus polypurine tract. J Virol 70(10):7132–7142 [Research Support, U.S. Gov’t, P.H.S.]

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart F. J. LeGrice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

LeGrice, S.F.J. (2013). Conformational Dynamics of Reverse Transcription. In: LeGrice, S., Gotte, M. (eds) Human Immunodeficiency Virus Reverse Transcriptase. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7291-9_4

Download citation

Publish with us

Policies and ethics