Advertisement

The RNase H Domain: Structure, Function and Mechanism

  • Marcin Nowotny
  • Małgorzata Figiel
Chapter

Abstract

An essential step of proliferation of retroviruses and transposition of long terminal repeat-containing retrotransposons is conversion of their single-stranded RNA genome into integration-competent, double-stranded proviral DNA by the multifunctional reverse transcriptase (RT) (Gilboa et al. 1979). RT is an enzyme with two activities. RNA-dependent DNA polymerase activity is first used to synthesize minus (−) strand DNA from the positive-stranded RNA genome, resulting in an RNA/DNA replication intermediate. The RNA strand of these hybrids is degraded by the RNase H activity to allow DNA-dependent synthesis of (+) strand DNA. RNase H activity is used not only to nonspecifically remove the RNA but also to specifically generate and remove RNA primers required to initiate synthesis of both DNA strands. In this chapter, we describe the current understanding of the HIV RNase H domain and its cellular counterparts – RNases H1 – with particular focus on structural data which, together with biochemical and computational studies, have revealed a detailed picture of the mechanism of action of this important and clinically significant enzyme. We will also discuss how the RNase H domain functions in the context of the dimeric HIV-1 RT.

Keywords

Moloney Murine Leukemia Virus Strand Transfer Human RNase Cellular Counterpart Scissile Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arion D et al (2002) Mutational analysis of Tyr-501 of HIV-1 reverse transcriptase. Effects on ribonuclease H activity and inhibition of this activity by N-acylhydrazones. J Biol Chem 277(2):1370–1374PubMedGoogle Scholar
  2. Arudchandran A et al (2000) The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells 5(10):789–802PubMedGoogle Scholar
  3. Beilhartz GL et al (2009) HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both DNA polymerase and RNase H active sites: implications for RNase H inhibition. J Mol Biol 388(3):462–474PubMedGoogle Scholar
  4. Ben-Artzi H et al (1992) Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases. Nucleic Acids Res 20(19): 5115–5118PubMedGoogle Scholar
  5. Boyer PL, Ferris AL, Hughes SH (1992a) Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1. J Virol 66(2):1031–1039PubMedGoogle Scholar
  6. Boyer PL, Ferris AL, Hughes SH (1992b) Mutational analysis of the fingers domain of human immunodeficiency virus type 1 reverse transcriptase. J Virol 66(12):7533–7537PubMedGoogle Scholar
  7. Boyer PL et al (1994) Mutational analysis of the fingers and palm subdomains of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase. J Mol Biol 243(3):472–483PubMedGoogle Scholar
  8. Broccoli S et al (2004) Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation. Mol Microbiol 52(6):1769–1779PubMedGoogle Scholar
  9. Cerritelli SM et al (1998) A common 40 amino acid motif in eukaryotic RNases H1 and caulimovirus ORF VI proteins binds to duplex RNAs. Nucleic Acids Res 26(7):1834–1840PubMedGoogle Scholar
  10. Cerritelli SM et al (2003) Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol Cell 11(3):807–815PubMedGoogle Scholar
  11. Chung S et al (2011) Synthesis, activity, and structural analysis of novel alpha-hydroxytropolone inhibitors of human immunodeficiency virus reverse transcriptase-associated ribonuclease H. J Med Chem 54(13):4462–4473PubMedGoogle Scholar
  12. Cirino NM et al (1995) Divalent cation modulation of the ribonuclease functions of human immunodeficiency virus reverse transcriptase. Biochemistry 34(31):9936–9943PubMedGoogle Scholar
  13. Cote ML, Roth MJ (2008) Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase. Virus Res 134(1–2):186–202PubMedGoogle Scholar
  14. Davies JF 2nd et al (1991) Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science 252(5002):88–95PubMedGoogle Scholar
  15. De Vivo M, Dal Peraro M, Klein ML (2008) Phosphodiester cleavage in ribonuclease H occurs via an associative two-metal-aided catalytic mechanism. J Am Chem Soc 130(33):10955–10962PubMedGoogle Scholar
  16. DeStefano JJ et al (1991) Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled. J Biol Chem 266(12):7423–7431PubMedGoogle Scholar
  17. DeStefano JJ et al (1994) Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases. Nucleic Acids Res 22(18):3793–3800PubMedGoogle Scholar
  18. DeStefano JJ et al (2001) Physical mapping of HIV reverse transcriptase to the 5′ end of RNA primers. J Biol Chem 276(35):32515–32521PubMedGoogle Scholar
  19. Drolet M et al (1995) Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc Natl Acad Sci USA 92(8):3526–3530PubMedGoogle Scholar
  20. Dudding LR, Nkabinde NC, Mizrahi V (1991) Analysis of the RNA- and DNA-dependent DNA polymerase activities of point mutants of HIV-1 reverse transcriptase lacking ribonuclease H activity. Biochemistry 30(43):10498–10506PubMedGoogle Scholar
  21. Elsasser B, Fels G (2010) Atomistic details of the associative phosphodiester cleavage in human ribonuclease H. Phys Chem Chem Phys 12(36):11081–11088PubMedGoogle Scholar
  22. Evans DB et al (1991) A recombinant ribonuclease H domain of HIV-1 reverse transcriptase that is enzymatically active. J Biol Chem 266(31):20583–20585PubMedGoogle Scholar
  23. Fuentes GM et al (1995) Use of an oligoribonucleotide containing the polypurine tract sequence as a primer by HIV reverse transcriptase. J Biol Chem 270(47):28169–28176PubMedGoogle Scholar
  24. Furfine ES, Reardon JE (1991a) Reverse transcriptase. RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J Biol Chem 266(1):406–412PubMedGoogle Scholar
  25. Furfine ES, Reardon JE (1991b) Human immunodeficiency virus reverse transcriptase ribonuclease H: specificity of tRNA(Lys3)-primer excision. Biochemistry 30(29):7041–7046PubMedGoogle Scholar
  26. Gaidamakov SA et al (2005) Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain. Nucleic Acids Res 33(7):2166–2175PubMedGoogle Scholar
  27. Gao HQ et al (1998) Effects of mutations in the polymerase domain on the polymerase, RNase H and strand transfer activities of human immunodeficiency virus type 1 reverse transcriptase. J Mol Biol 277(3):559–572PubMedGoogle Scholar
  28. Gao L et al (2008) Apparent defects in processive DNA synthesis, strand transfer, and primer elongation of Met-184 mutants of HIV-1 reverse transcriptase derive solely from a dNTP utilization defect. J Biol Chem 283(14):9196–9205PubMedGoogle Scholar
  29. Gilboa E et al (1979) A detailed model of reverse transcription and tests of crucial aspects. Cell 18(1):93–100PubMedGoogle Scholar
  30. Goedken ER, Marqusee S (2001) Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site. J Biol Chem 276(10):7266–7271PubMedGoogle Scholar
  31. Gopalakrishnan V, Peliska JA, Benkovic SJ (1992) Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities. Proc Natl Acad Sci USA 89(22):10763–10767PubMedGoogle Scholar
  32. Gotte M et al (1998) Localization of the active site of HIV-1 reverse transcriptase-associated RNase H domain on a DNA template using site-specific generated hydroxyl radicals. J Biol Chem 273(17):10139–10146PubMedGoogle Scholar
  33. Gotte M et al (1999) Temporal coordination between initiation of HIV (+)-strand DNA synthesis and primer removal. J Biol Chem 274(16):11159–11169PubMedGoogle Scholar
  34. Hansen J, Schulze T, Moelling K (1987) RNase H activity associated with bacterially expressed reverse transcriptase of human T-cell lymphotropic virus III/lymphadenopathy-associated virus. J Biol Chem 262(26):12393–12396PubMedGoogle Scholar
  35. Hansen J et al (1988) Identification and characterization of HIV-specific RNase H by monoclonal antibody. EMBO J 7(1):239–243PubMedGoogle Scholar
  36. Haruki M et al (1994) Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis. Eur J Biochem 220(2):623–631PubMedGoogle Scholar
  37. Haruki M et al (1997) Kinetic and stoichiometric analysis for the binding of Escherichia coli ribonuclease HI to RNA-DNA hybrids using surface plasmon resonance. J Biol Chem 272(35):22015–22022PubMedGoogle Scholar
  38. Haruki M et al (2000) Catalysis by Escherichia coli ribonuclease HI is facilitated by a phosphate group of the substrate. Biochemistry 39(45):13939–13944PubMedGoogle Scholar
  39. Himmel DM et al (2009) Structure of HIV-1 reverse transcriptase with the inhibitor beta-Thujaplicinol bound at the RNase H active site. Structure 17(12):1625–1635PubMedGoogle Scholar
  40. Hostomsky Z et al (1991) Reconstitution in vitro of RNase H activity by using purified N-terminal and C-terminal domains of human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci USA 88(4):1148–1152PubMedGoogle Scholar
  41. Hostomsky Z et al (1994) Redesignation of the RNase D activity associated with retroviral reverse transcriptase as RNase H. J Virol 68(3):1970–1971PubMedGoogle Scholar
  42. Huang H et al (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282(5394):1669–1675PubMedGoogle Scholar
  43. Huber HE, Richardson CC (1990) Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase. J Biol Chem 265(18):10565–10573PubMedGoogle Scholar
  44. Jacobo-Molina A et al (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA 90(13):6320–6324PubMedGoogle Scholar
  45. Julias JG et al (2002) Mutations in the RNase H domain of HIV-1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage in vivo. Proc Natl Acad Sci USA 99(14):9515–9520PubMedGoogle Scholar
  46. Julias JG et al (2003) Mutation of amino acids in the connection domain of human immunodeficiency virus type 1 reverse transcriptase that contact the template-primer affects RNase H activity. J Virol 77(15):8548–8554PubMedGoogle Scholar
  47. Kanaya S (1998) Enzymatic activity and protein stability of E. coli ribonuclease HI. In: Toulme JJ, Crouch HRJ (eds) Ribonucleases. INSERM, Paris, pp.1–38Google Scholar
  48. Kanaya S et al (1990) Identification of the amino acid residues involved in an active site of Escherichia coli ribonuclease H by site-directed mutagenesis. J Biol Chem 265(8):4615–4621PubMedGoogle Scholar
  49. Kanaya S, Katsuda-Nakai C, Ikehara M (1991) Importance of the positive charge cluster in Escherichia coli ribonuclease HI for the effective binding of the substrate. J Biol Chem 266(18):11621–11627PubMedGoogle Scholar
  50. Katayanagi K et al (1990) Three-dimensional structure of ribonuclease H from E. coli. Nature 347(6290):306–309PubMedGoogle Scholar
  51. Kati WM et al (1992) Mechanism and fidelity of HIV reverse transcriptase. J Biol Chem 267(36):25988–25997PubMedGoogle Scholar
  52. Keck JL, Marqusee S (1995) Substitution of a highly basic helix/loop sequence into the RNase H domain of human immunodeficiency virus reverse transcriptase restores its Mn(2+)-dependent RNase H activity. Proc Natl Acad Sci USA 92(7):2740–2744PubMedGoogle Scholar
  53. Keck JL, Marqusee S (1996) The putative substrate recognition loop of Escherichia coli ribonuclease H is not essential for activity. J Biol Chem 271(33):19883–19887PubMedGoogle Scholar
  54. Keck JL, Goedken ER, Marqusee S (1998) Activation/attenuation model for RNase H. A one-metal mechanism with second-metal inhibition. J Biol Chem 273(51):34128–34133PubMedGoogle Scholar
  55. Krakowiak A et al (2002) Stereochemical course of Escherichia coli RNase H. Chembiochem 3(12):1242–1250PubMedGoogle Scholar
  56. Krug MS, Berger SL (1989) Ribonuclease H activities associated with viral reverse transcriptases are endonucleases. Proc Natl Acad Sci USA 86(10):3539–3543PubMedGoogle Scholar
  57. Kvaratskhelia M, Budihas SR, Le Grice SF (2002) Pre-existing distortions in nucleic acid structure aid polypurine tract selection by HIV-1 reverse transcriptase. J Biol Chem 277(19): 16689–16696PubMedGoogle Scholar
  58. Lapkouski et al (2013) Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat Struct Mol Biol 20(2):230–236Google Scholar
  59. Lazzaro F et al (2012) RNase H and postreplication repair protect cells from Ribonucleotides incorporated in DNA. Mol Cell 45(1):99–110PubMedGoogle Scholar
  60. Lim D, Orlova M, Goff SP (2002) Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition. J Virol 76(16):8360–8373PubMedGoogle Scholar
  61. Lima WF et al (2007a) Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol Pharmacol 71(1):83–91PubMedGoogle Scholar
  62. Lima WF et al (2007b) The positional influence of the helical geometry of the heteroduplex substrate on human RNase H1 catalysis. Mol Pharmacol 71(1):73–82PubMedGoogle Scholar
  63. Mandal D et al (2006) Analysis of HIV-1 replication block due to substitutions at F61 residue of reverse transcriptase reveals additional defects involving the RNase H function. Nucleic Acids Res 34(10):2853–2863PubMedGoogle Scholar
  64. McWilliams MJ et al (2003) Mutations in the 5′ end of the human immunodeficiency virus type 1 polypurine tract affect RNase H cleavage specificity and virus titer. J Virol 77(20): 11150–11157PubMedGoogle Scholar
  65. McWilliams MJ et al (2006) Combining mutations in HIV-1 reverse transcriptase with mutations in the HIV-1 polypurine tract affects RNase H cleavages involved in PPT utilization. Virology 348(2):378–388PubMedGoogle Scholar
  66. Miller HI, Riggs AD, Gill GN (1973) Ribonuclease H (hybrid) in Escherichia coli. Identification and characterization. J Biol Chem 248(7):2621–2624PubMedGoogle Scholar
  67. Mizrahi V et al (1990) Site-directed mutagenesis of the conserved Asp-443 and Asp-498 carboxy-terminal residues of HIV-1 reverse transcriptase. Nucleic Acids Res 18(18): 5359–5363PubMedGoogle Scholar
  68. Mizrahi V, Brooksbank RL, Nkabinde NC (1994) Mutagenesis of the conserved aspartic acid 443, glutamic acid 478, asparagine 494, and aspartic acid 498 residues in the ribonuclease H domain of p66/p51 human immunodeficiency virus type I reverse transcriptase. Expression and biochemical analysis. J Biol Chem 269(30):19245–19249PubMedGoogle Scholar
  69. Nowak E et al (2013) Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res 41(6):3874–3887Google Scholar
  70. Nowotny M (2009) Retroviral integrase superfamily: the structural perspective. EMBO Rep 10(2):144–151PubMedGoogle Scholar
  71. Nowotny M, Yang W (2006) Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J 25(9):1924–1933PubMedGoogle Scholar
  72. Nowotny M et al (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121(7):1005–1016PubMedGoogle Scholar
  73. Nowotny M et al (2007) Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription. Mol Cell 28(2):264–276PubMedGoogle Scholar
  74. Nowotny M et al (2008) Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD. EMBO J 27(7):1172–1181PubMedGoogle Scholar
  75. Oda Y, Yoshida M, Kanaya S (1993) Role of histidine 124 in the catalytic function of ribonuclease HI from Escherichia coli. J Biol Chem 268(1):88–92PubMedGoogle Scholar
  76. Ohtani N et al (1999a) Molecular diversities of RNases H. J Biosci Bioeng 88(1):12–19PubMedGoogle Scholar
  77. Ohtani N et al (1999b) Identification of the genes encoding Mn2+−dependent RNase HII and Mg2+−dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families. Biochemistry 38(2):605–618PubMedGoogle Scholar
  78. Palaniappan C et al (1996) Helix structure and ends of RNA/DNA hybrids direct the cleavage specificity of HIV-1 reverse transcriptase RNase H. J Biol Chem 271(4):2063–2070PubMedGoogle Scholar
  79. Palaniappan C et al (1998) Control of initiation of viral plus strand DNA synthesis by HIV reverse transcriptase. J Biol Chem 273(7):3808–3816PubMedGoogle Scholar
  80. Pallan PS, Egli M (2008) Insights into RNA/DNA hybrid recognition and processing by RNase H from the crystal structure of a non-specific enzyme-dsDNA complex. Cell Cycle 7(16): 2562–2569PubMedGoogle Scholar
  81. Peliska JA, Benkovic SJ (1992) Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 258(5085):1112–1118PubMedGoogle Scholar
  82. Powell MD, Levin JG (1996) Sequence and structural determinants required for priming of plus-strand DNA synthesis by the human immunodeficiency virus type 1 polypurine tract. J Virol 70(8):5288–5296PubMedGoogle Scholar
  83. Powell MD et al (1999) Residues in the alphaH and alphaI helices of the HIV-1 reverse transcriptase thumb subdomain required for the specificity of RNase H-catalyzed removal of the polypurine tract primer. J Biol Chem 274(28):19885–19893PubMedGoogle Scholar
  84. Pullen KA, Ishimoto LK, Champoux JJ (1992) Incomplete removal of the RNA primer for minus-strand DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. J Virol 66(1):367–373PubMedGoogle Scholar
  85. Purohit V et al (2007) Mechanisms that prevent template inactivation by HIV-1 reverse transcriptase RNase H cleavages. J Biol Chem 282(17):12598–12609PubMedGoogle Scholar
  86. Rausch JW, Le Grice SF (1997) Substituting a conserved residue of the ribonuclease H domain alters substrate hydrolysis by retroviral reverse transcriptase. J Biol Chem 272(13):8602–8610PubMedGoogle Scholar
  87. Rausch JW, Le Grice SF (2004) ‘Binding, bending and bonding’: polypurine tract-primed initiation of plus-strand DNA synthesis in human immunodeficiency virus. Int J Biochem Cell Biol 36(9):1752–1766PubMedGoogle Scholar
  88. Rausch JW et al (2002) Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity. Biochemistry 41(15):4856–4865PubMedGoogle Scholar
  89. Rausch JW et al (2003) Hydrolysis of RNA/DNA hybrids containing nonpolar pyrimidine isosteres defines regions essential for HIV type 1 polypurine tract selection. Proc Natl Acad Sci USA 100(20):11279–11284PubMedGoogle Scholar
  90. Rosta E et al (2011) Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations. J Am Chem Soc 133(23):8934–8941PubMedGoogle Scholar
  91. Sarafianos SG et al (2001) Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J 20(6):1449–1461PubMedGoogle Scholar
  92. Schatz O et al (1989) Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function. FEBS Lett 257(2):311–314PubMedGoogle Scholar
  93. Schultz SJ, Champoux JJ (1996) RNase H domain of Moloney murine leukemia virus reverse transcriptase retains activity but requires the polymerase domain for specificity. J Virol 70(12):8630–8638PubMedGoogle Scholar
  94. Schultz SJ, Champoux JJ (2008) RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 134(1–2):86–103PubMedGoogle Scholar
  95. Schultz SJ, Zhang M, Champoux JJ (2004) Recognition of internal cleavage sites by retroviral RNases H. J Mol Biol 344(3):635–652PubMedGoogle Scholar
  96. Schultz SJ, Zhang M, Champoux JJ (2006) Sequence, distance, and accessibility are determinants of 5′-end-directed cleavages by retroviral RNases H. J Biol Chem 281(4):1943–1955PubMedGoogle Scholar
  97. Smith JS, Roth MJ (1993) Purification and characterization of an active human immunodeficiency virus type 1 RNase H domain. J Virol 67(7):4037–4049PubMedGoogle Scholar
  98. Smith JS, Gritsman K, Roth MJ (1994) Contributions of DNA polymerase subdomains to the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase. J Virol 68(9):5721–5729PubMedGoogle Scholar
  99. Smith CM, Smith JS, Roth MJ (1999) RNase H requirements for the second strand transfer reaction of human immunodeficiency virus type 1 reverse transcription. J Virol 73(8):6573–6581PubMedGoogle Scholar
  100. Stahl SJ et al (1994) Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase. Protein Eng 7(9):1103–1108PubMedGoogle Scholar
  101. Starnes MC, Cheng YC (1989) Human immunodeficiency virus reverse transcriptase-associated RNase H activity. J Biol Chem 264(12):7073–7077PubMedGoogle Scholar
  102. Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90(14):6498–6502PubMedGoogle Scholar
  103. Suo Z, Johnson KA (1997) Effect of RNA secondary structure on RNA cleavage catalyzed by HIV-1 reverse transcriptase. Biochemistry 36(41):12468–12476PubMedGoogle Scholar
  104. Tanese N, Goff SP (1988) Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities. Proc Natl Acad Sci USA 85(6):1777–1781PubMedGoogle Scholar
  105. Telesnitsky A, Blain SW, Goff SP (1992) Defects in Moloney murine leukemia virus replication caused by a reverse transcriptase mutation modeled on the structure of Escherichia coli RNase H. J Virol 66(2):615–622PubMedGoogle Scholar
  106. Tisdale M et al (1991) Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity. J Gen Virol 72(Pt 1):59–66PubMedGoogle Scholar
  107. Volkmann S et al (1993) Enzymatic analysis of two HIV-1 reverse transcriptase mutants with mutations in carboxyl-terminal amino acid residues conserved among retroviral ribonucleases H. J Biol Chem 268(4):2674–2683PubMedGoogle Scholar
  108. Wahba L et al (2011) RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol Cell 44(6):978–988PubMedGoogle Scholar
  109. Wang J et al (1994) Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc Natl Acad Sci USA 91(15):7242–7246PubMedGoogle Scholar
  110. Wisniewski M et al (2000a) Unique progressive cleavage mechanism of HIV reverse transcriptase RNase H. Proc Natl Acad Sci USA 97(22):11978–11983PubMedGoogle Scholar
  111. Wisniewski M et al (2000b) The sequential mechanism of HIV reverse transcriptase RNase H. J Biol Chem 275(48):37664–37671PubMedGoogle Scholar
  112. Wisniewski M et al (2002) Substrate requirements for secondary cleavage by HIV-1 reverse transcriptase RNase H. J Biol Chem 277(32):28400–28410PubMedGoogle Scholar
  113. Wohrl BM, Moelling K (1990) Interaction of HIV-1 ribonuclease H with polypurine tract containing RNA-DNA hybrids. Biochemistry 29(44):10141–10147PubMedGoogle Scholar
  114. Yang W et al (1990) Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science 249(4975):1398–1405PubMedGoogle Scholar
  115. Yang W, Lee JY, Nowotny M (2006) Making and breaking nucleic acids: two-Mg2+−ion catalysis and substrate specificity. Mol Cell 22(1):5–13PubMedGoogle Scholar
  116. Zhan X, Crouch RJ (1997) The isolated RNase H domain of murine leukemia virus reverse transcriptase. Retention of activity with concomitant loss of specificity. J Biol Chem 272(35): 22023–22029PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.International Institute of Molecular and Cell BiologyWarsawPoland

Personalised recommendations