Skip to main content

APOBECs and Their Role in Proviral DNA Synthesis

  • Chapter
  • First Online:
Human Immunodeficiency Virus Reverse Transcriptase
  • 1122 Accesses

Abstract

The human APOBEC3 subfamily consists of seven DNA cytosine deaminases that act on single-stranded cDNA during HIV reverse transcription. The net effect of these enzymes is the restriction of viral infectivity due to the inhibition of reverse transcription and to the hypermutation of those genomes that complete cDNA synthesis and integration. In this chapter, we introduce the APOBEC3 proteins in historical context as a prelude to the consideration of evidence for their deaminase-dependent and deaminase-independent mechanisms of antiviral action. We also consider how editing of the viral genome by APOBEC3 proteins may alter the coding capacity and pathogenic potential of HIV by contributing to the inherently error-prone replication process and to the overall high level of HIV genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken C, Trono D (1995) Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J Virol 69(8):5048–5056

    PubMed  CAS  Google Scholar 

  • Albin JS, Harris RS (2010) Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev Mol Med 12(e4):1–26

    Google Scholar 

  • Albin JS, Haché G, Hultquist JF, Brown WL, Harris RS (2010a) Long-term restriction by APOBEC3F selects human immunodeficiency virus type 1 variants with restored Vif function. J Virol 84(19):10209–10219

    Article  PubMed  CAS  Google Scholar 

  • Albin JS, LaRue RS, Weaver JA, Brown WL, Shindo K, Harjes E, Harris RS (2010b) A single amino acid in human APOBEC3F alters susceptibility to HIV-1 Vif. J Biol Chem 285(52): 40785–40792

    Article  PubMed  CAS  Google Scholar 

  • Alce TM, Popik W (2004) APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 279(33):34083–34086

    Article  PubMed  CAS  Google Scholar 

  • Amoedo ND, Afonso AO, Cunha SM, Oliveira RH, Machado ES, Soares MA (2011) Expression of APOBEC3G/3F and G-to-A hypermutation levels in HIV-1-Infected children with different profiles of disease progression. PLoS One 6(8):e24118

    Article  PubMed  CAS  Google Scholar 

  • An P, Bleiber G, Duggal P, Nelson G, May M, Mangeat B et al (2004) APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol 78(20):11070–11076

    Article  PubMed  CAS  Google Scholar 

  • An P, Johnson R, Phair J, Kirk GD, Yu XF, Donfield S, Winkler CA (2009) APOBEC3B deletion and risk of HIV-1 acquisition. J Infect Dis 200(7):1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Autore F, Bergeron JR, Malim MH, Fraternali F, Huthoff H (2010) Rationalisation of the differences between APOBEC3G structures from crystallography and NMR studies by molecular dynamics simulations. PLoS One 5(7):e11515

    Article  PubMed  CAS  Google Scholar 

  • Beale RC, Petersen-Mahrt SK, Watt IN, Harris RS, Rada C, Neuberger MS (2004) Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol 337(3):585–596

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Munk C, Schweizer M, Cichutek K, Schule S, Flory E (2010) Interaction of Vpx and apolipoprotein B mRNA-editing catalytic polypeptide 3 family member A (APOBEC3A) correlates with efficient lentivirus infection of monocytes. J Biol Chem 285(16):12248–12254

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Sommer AF, Zwarg J, Hamdorf M, Welzel K, Esly N et al (2011a) SAMHD1-Deficient CD14+ Cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 7(12):e1002425

    Article  PubMed  CAS  Google Scholar 

  • Berger G, Durand S, Fargier G, Nguyen XN, Cordeil S, Bouaziz S et al (2011b) APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells. PLoS Pathog 7(9):e1002221

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, de Ronde A (2004) APOBEC3G versus reverse transcriptase in the generation of HIV-1 drug-resistance mutations. AIDS 18(13):1861–1863

    Article  PubMed  Google Scholar 

  • Bewick S, Wu J, Lenaghan SC, Yang R, Zhang M, Hamel W (2011) The R5 to X4 coreceptor switch: a dead-end path, or a strategic maneuver? Lessons from a game theoretic analysis. Bull Math Biol 73(10):2339–2356

    Article  PubMed  Google Scholar 

  • Biasin M, Piacentini L, Lo Caputo S, Kanari Y, Magri G, Trabattoni D et al (2007) Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G: a possible role in the resistance to HIV of HIV-exposed seronegative individuals. J Infect Dis 195(7):960–964

    Article  PubMed  CAS  Google Scholar 

  • Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, Malim MH (2004) Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14(15):1392–1396

    Article  PubMed  CAS  Google Scholar 

  • Bishop KN, Holmes RK, Malim MH (2006) Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 80(17):8450–8458

    Article  PubMed  CAS  Google Scholar 

  • Bishop KN, Verma M, Kim EY, Wolinsky SM, Malim MH (2008) APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 4(12):e1000231

    Article  PubMed  CAS  Google Scholar 

  • Bogerd HP, Cullen BR (2008) Single-stranded RNA facilitates nucleocapsid: APOBEC3G complex formation. RNA 14(6):1228–1236

    Article  PubMed  CAS  Google Scholar 

  • Bogerd HP, Doehle BP, Wiegand HL, Cullen BR (2004) A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci USA 101(11):3770–3774

    Article  PubMed  CAS  Google Scholar 

  • Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O’Shea KS, Moran JV, Cullen BR (2006) Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci USA 103(23):8780–8785

    Article  PubMed  CAS  Google Scholar 

  • Borman AM, Quillent C, Charneau P, Dauguet C, Clavel F (1995) Human immunodeficiency virus type 1 Vif- mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity. J Virol 69(4):2058–2067

    PubMed  CAS  Google Scholar 

  • Breaker RR (2004) Natural and engineered nucleic acids as tools to explore biology. Nature 432(7019):838–845

    Article  PubMed  CAS  Google Scholar 

  • Britan-Rosich E, Nowarski R, Kotler M (2011) Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif. J Mol Biol 410(5):1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Browne EP, Allers C, Landau NR (2009) Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology 387(2):313–321

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Bloom LB, Eritja R, Goodman MF (1993) Kinetics of deoxyribonucleotide insertion and extension at abasic template lesions in different sequence contexts using HIV-1 reverse transcriptase. J Biol Chem 268(31):23567–23572

    PubMed  CAS  Google Scholar 

  • Cancio R, Spadari S, Maga G (2004) Vif is an auxiliary factor of the HIV-1 reverse transcriptase and facilitates abasic site bypass. Biochem J 383(Pt. 3):475–482

    PubMed  CAS  Google Scholar 

  • Carpenter MA, Rajagurubandara E, Wijesinghe P, Bhagwat AS (2010) Determinants of sequence-specificity within human AID and APOBEC3G. DNA Repair 9(5):579–587

    Article  PubMed  CAS  Google Scholar 

  • Carr JM, Davis AJ, Coolen C, Cheney K, Burrell CJ, Li P (2006) Vif-deficient HIV reverse transcription complexes (RTCs) are subject to structural changes and mutation of RTC-associated reverse transcription products. Virology 351(1):80–91

    Article  PubMed  CAS  Google Scholar 

  • Carr JM, Coolen C, Davis AJ, Burrell CJ, Li P (2008) Human immunodeficiency virus 1 (HIV-1) virion infectivity factor (Vif) is part of reverse transcription complexes and acts as an accessory factor for reverse transcription. Virology 372(1):147–156

    Article  PubMed  CAS  Google Scholar 

  • Cen S, Guo F, Niu M, Saadatmand J, Deflassieux J, Kleiman L (2004) The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 279(32):33177–33184

    Article  PubMed  CAS  Google Scholar 

  • Chelico L, Pham P, Calabrese P, Goodman MF (2006) APOBEC3G DNA deaminase acts processively 3′ → 5′ on single-stranded DNA. Nat Struct Mol Biol 13(5):392–399

    Article  PubMed  CAS  Google Scholar 

  • Chelico L, Sacho EJ, Erie DA, Goodman MF (2008) A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem 283(20): 13780–13791

    Article  PubMed  CAS  Google Scholar 

  • Chelico L, Prochnow C, Erie DA, Chen XS, Goodman MF (2010) Structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G. J Biol Chem 285(21):16195–16205

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Le Rouzic E, Kearney JA, Mansky LM, Benichou S (2004) Vpr-mediated incorporation of UNG2 into HIV-1 particles is required to modulate the virus mutation rate and for replication in macrophages. J Biol Chem 279(27):28419–28425

    Article  PubMed  CAS  Google Scholar 

  • Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y, Shindo K et al (2008) Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452(7183):116–119

    Article  PubMed  CAS  Google Scholar 

  • Cho SJ, Drechsler H, Burke RC, Arens MQ, Powderly W, Davidson NO (2006) APOBEC3F and APOBEC3G mRNA levels do not correlate with human immunodeficiency virus type 1 plasma viremia or CD4+ T-cell count. J Virol 80(4):2069–2072

    Article  PubMed  CAS  Google Scholar 

  • Conticello SG (2008) The AID/APOBEC family of nucleic acid mutators. Genome Biol 9(6):229

    Article  PubMed  CAS  Google Scholar 

  • Conticello SG, Harris RS, Neuberger MS (2003) The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol 13(22):2009–2013

    Article  PubMed  CAS  Google Scholar 

  • Courcoul M, Patience C, Rey F, Blanc D, Harmache A, Sire J et al (1995) Peripheral blood mononuclear cells produce normal amounts of defective Vif- human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. J Virol 69(4):2068–2074

    PubMed  CAS  Google Scholar 

  • Dang Y, Wang X, Esselman WJ, Zheng YH (2006) Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family. J Virol 80(21):10522–10533

    Article  PubMed  CAS  Google Scholar 

  • Derse D, Hill SA, Princler G, Lloyd P, Heidecker G (2007) Resistance of human T cell leukemia virus type 1 to APOBEC3G restriction is mediated by elements in nucleocapsid. Proc Natl Acad Sci USA 104(8):2915–2920

    Article  PubMed  CAS  Google Scholar 

  • Diamond TL, Roshal M, Jamburuthugoda VK, Reynolds HM, Merriam AR, Lee KY et al (2004) Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J Biol Chem 279(49):51545–51553

    Article  PubMed  CAS  Google Scholar 

  • Do H, Vasilescu A, Diop G, Hirtzig T, Heath SC, Coulonges C et al (2005) Exhaustive genotyping of the CEM15 (APOBEC3G) gene and absence of association with AIDS progression in a French cohort. J Infect Dis 191(2):159–163

    Article  PubMed  CAS  Google Scholar 

  • Duggal NK, Malik HS, Emerman M (2011) Positive selection of Apobec3DE in chimpanzees has driven breadth in anti-viral activity. J Virol 85(21):11361–11371

    Article  PubMed  CAS  Google Scholar 

  • Esnault C, Heidmann O, Delebecque F, Dewannieux M, Ribet D, Hance AJ et al (2005) APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433(7024):430–433

    Article  PubMed  CAS  Google Scholar 

  • Esnault C, Millet J, Schwartz O, Heidmann T (2006) Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Res 34(5):1522–1531

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Chelico L (2011) Intensity of deoxycytidine deamination of HIV-1 proviral DNA by the retroviral restriction factor APOBEC3G is mediated by the noncatalytic domain. J Biol Chem 286(13):11415–11426

    Article  PubMed  CAS  Google Scholar 

  • Fletcher TM 3rd, Brichacek B, Sharova N, Newman MA, Stivahtis G, Sharp PM et al (1996) Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J 15(22):6155–6165

    PubMed  CAS  Google Scholar 

  • Fourati S, Malet I, Binka M, Boukobza S, Wirden M, Sayon S et al (2010) Partially active HIV-1 Vif alleles facilitate viral escape from specific antiretrovirals. AIDS 24(15):2313–2321

    PubMed  CAS  Google Scholar 

  • Friew YN, Boyko V, Hu WS, Pathak VK (2009) Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA. Retrovirology 6:56

    Article  PubMed  CAS  Google Scholar 

  • Furukawa A, Nagata T, Matsugami A, Habu Y, Sugiyama R, Hayashi F et al (2009) Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. EMBO J 28(4):440–451

    Article  PubMed  CAS  Google Scholar 

  • Gabuzda DH, Lawrence K, Langhoff E, Terwilliger E, Dorfman T, Haseltine WA, Sodroski J (1992) Role of Vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 66(11):6489–6495

    PubMed  CAS  Google Scholar 

  • Gabuzda DH, Li H, Lawrence K, Vasir BS, Crawford K, Langhoff E (1994) Essential role of vif in establishing productive HIV-1 infection in peripheral blood T lymphocytes and monocyte/macrophages. J Acquir Immune Defic Syndr 7(9):908–915

    PubMed  CAS  Google Scholar 

  • Gandhi SK, Siliciano JD, Bailey JR, Siliciano RF, Blankson JN (2008) Role of APOBEC3G/F-mediated hypermutation in the control of human immunodeficiency virus type 1 in elite suppressors. J Virol 82(6):3125–3130

    Article  PubMed  CAS  Google Scholar 

  • Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E et al (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480(7377):379–382

    Article  PubMed  CAS  Google Scholar 

  • Goncalves J, Korin Y, Zack J, Gabuzda D (1996) Role of Vif in human immunodeficiency virus type 1 reverse transcription. J Virol 70(12):8701–8709

    PubMed  CAS  Google Scholar 

  • Gooch BD, Cullen BR (2008) Functional domain organization of human APOBEC3G. Virology 379(1):118–124

    Article  PubMed  CAS  Google Scholar 

  • Goujon C, Riviere L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A (2007) SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4:2

    Article  PubMed  CAS  Google Scholar 

  • Gramberg T, Sunseri N, Landau NR (2010) Evidence for an activation domain at the amino terminus of simian immunodeficiency virus Vpx. J Virol 84(3):1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Cen S, Niu M, Saadatmand J, Kleiman L (2006) Inhibition of formula-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. J Virol 80(23):11710–11722

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Cen S, Niu M, Yang Y, Gorelick RJ, Kleiman L (2007) The interaction of APOBEC3G with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3Lys annealing to viral RNA. J Virol 81(20):11322–11331

    Article  PubMed  CAS  Google Scholar 

  • Haché G, Liddament MT, Harris RS (2005) The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain. J Biol Chem 280(12):10920–10924

    Article  PubMed  CAS  Google Scholar 

  • Haché G, Mansky LM, Harris RS (2006) Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance. AIDS Rev 8(3):148–157

    PubMed  Google Scholar 

  • Haché G, Shindo K, Albin JS, Harris RS (2008) Evolution of HIV-1 isolates that use a novel Vif-independent mechanism to resist restriction by human APOBEC3G. Curr Biol 18(11):819–824

    Article  PubMed  CAS  Google Scholar 

  • Harjes E, Gross PJ, Chen KM, Lu Y, Shindo K, Nowarski R et al (2009) An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model. J Mol Biol 389(5):819–832

    Article  PubMed  CAS  Google Scholar 

  • Harris RS (2008) Enhancing immunity to HIV through APOBEC. Nat Biotechnol 26(10): 1089–1090

    Article  PubMed  CAS  Google Scholar 

  • Harris RS, Petersen-Mahrt SK, Neuberger MS (2002) RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 10(5):1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN et al (2003a) DNA deamination mediates innate immunity to retroviral infection. Cell 113(6):803–809

    Article  PubMed  CAS  Google Scholar 

  • Harris RS, Sheehy AM, Craig HM, Malim MH, Neuberger MS (2003b) DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses. Nat Immunol 4(7):641–643

    Article  PubMed  CAS  Google Scholar 

  • Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U et al (2008) Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456(7218):121–124

    Article  PubMed  CAS  Google Scholar 

  • Holmes RK, Koning FA, Bishop KN, Malim MH (2007) APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G. J Biol Chem 282(4):2587–2595

    Article  PubMed  CAS  Google Scholar 

  • Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S et al (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474(7353):658–661

    Article  PubMed  CAS  Google Scholar 

  • Hultquist JF, Lengyel JA, Refsland EW, Larue RS, Lackey L, Brown WL, Harris RS (2011) Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H Demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J Virol 85(21):11220–11234

    Article  PubMed  CAS  Google Scholar 

  • Hultquist JF, Binka M, LaRue RS, Simon V, Harris RS (2012) Vif proteins of human and simian immunodeficiency viruses require cellular CBFβ to degrade APOBEC3 restriction factors. J Virol 68(5):2874–2877

    Article  CAS  Google Scholar 

  • Huthoff H, Malim MH (2007) Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J Virol 81(8):3807–3815

    Article  PubMed  CAS  Google Scholar 

  • Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH (2009) RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog 5(3):e1000330

    Article  PubMed  CAS  Google Scholar 

  • Itaya S, Nakajima T, Kaur G, Terunuma H, Ohtani H, Mehra N, Kimura A (2010) No evidence of an association between the APOBEC3B deletion polymorphism and susceptibility to HIV infection and AIDS in Japanese and Indian populations. J Infect Dis 202(5):815–816, author reply 816–817

    Article  PubMed  Google Scholar 

  • Iwatani Y, Takeuchi H, Strebel K, Levin JG (2006) Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virol 80(12):5992–6002

    Article  PubMed  CAS  Google Scholar 

  • Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W, Gronenborn AM et al (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35(21):7096–7108

    Article  PubMed  CAS  Google Scholar 

  • Jäger S, Kim DY, Hultquist JF, Shindo K, Larue RS, Kwon E et al (2011) Vif hijacks CBFβ to degrade APOBEC3G and promote HIV-1 infection. Nature 481(7381):371–375

    PubMed  Google Scholar 

  • Janini M, Rogers M, Birx DR, McCutchan FE (2001) Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+) T cells. J Virol 75(17):7973–7986

    Article  PubMed  CAS  Google Scholar 

  • Jern P, Russell RA, Pathak VK, Coffin JM (2009) Likely role of APOBEC3G-mediated G-to-A mutations in HIV-1 evolution and drug resistance. PLoS Pathog 5(4):e1000367

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Brooks A, Chen H, Bennett R, Reichman R, Smith H (2005) APOBEC3G/CEM15 (hA3G) mRNA levels associate inversely with human immunodeficiency virus viremia. J Virol 79(17):11513–11516

    Article  PubMed  CAS  Google Scholar 

  • Kaiser SM, Emerman M (2006) Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase APOBEC3G. J Virol 80(2):875–882

    Article  PubMed  CAS  Google Scholar 

  • Kao S, Khan MA, Miyagi E, Plishka R, Buckler-White A, Strebel K (2003) The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J Virol 77(21):11398–11407

    Article  PubMed  CAS  Google Scholar 

  • Kaushik R, Zhu X, Stranska R, Wu Y, Stevenson M (2009) A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection. Cell Host Microbe 6(1):68–80

    Article  PubMed  CAS  Google Scholar 

  • Kewalramani VN, Emerman M (1996) Vpx association with mature core structures of HIV-2. Virology 218(1):159–168

    Article  PubMed  CAS  Google Scholar 

  • Kim EY, Bhattacharya T, Kunstman K, Swantek P, Koning FA, Malim MH (2010) Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J Virol 84(19):10402–10405

    Article  PubMed  CAS  Google Scholar 

  • Klarmann GJ, Chen X, North TW, Preston BD (2003) Incorporation of uracil into minus strand DNA affects the specificity of plus strand synthesis initiation during lentiviral reverse transcription. J Biol Chem 278(10):7902–7909

    Article  PubMed  CAS  Google Scholar 

  • Kohli RM, Abrams SR, Gajula KS, Maul RW, Gearhart PJ, Stivers JT (2009) A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem 284(34):22898–22904

    Article  PubMed  CAS  Google Scholar 

  • Kohli RM, Maul RW, Guminski AF, McClure RL, Gajula KS, Saribasak H et al (2010) Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem 285(52):40956–40964

    Article  PubMed  CAS  Google Scholar 

  • Koning FA, Newman EN, Kim EY, Kunstman KJ, Wolinsky SM, Malim MH (2009) Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 83:9474–9485

    Article  PubMed  CAS  Google Scholar 

  • Koning FA, Goujon C, Bauby H, Malim MH (2011) Target cell-mediated editing of HIV-1 cDNA by APOBEC3 proteins in human macrophages. J Virol 85(24):13448–13452

    Article  PubMed  CAS  Google Scholar 

  • Krokan HE, Drablos F, Slupphaug G (2002) Uracil in DNA–occurrence, consequences and repair. Oncogene 21(58):8935–8948

    Article  PubMed  CAS  Google Scholar 

  • Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E et al (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474(7353):654–657

    Article  PubMed  CAS  Google Scholar 

  • Land AM, Ball TB, Luo M, Pilon R, Sandstrom P, Embree JE et al (2008) Human immunodeficiency virus (HIV) type 1 proviral hypermutation correlates with CD4 count in HIV-infected women from Kenya. J Virol 82(16):8172–8182

    Article  PubMed  CAS  Google Scholar 

  • Langlois MA, Neuberger MS (2008) Human APOBEC3G can restrict retroviral infection in avian cells and acts independently of both UNG and SMUG1. J Virol 82(9):4660–4664

    Article  PubMed  CAS  Google Scholar 

  • Langlois MA, Beale RC, Conticello SG, Neuberger MS (2005) Mutational comparison of the single-domained APOBEC3C and double-domained APOBEC3F/G anti-retroviral cytidine deaminases provides insight into their DNA target site specificities. Nucleic Acids Res 33(6):1913–1923

    Article  PubMed  CAS  Google Scholar 

  • LaRue RS, Jónsson SR, Silverstein KAT, Lajoie M, Bertrand D, El-Mabrouk N et al (2008) The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Mol Biol 9(1):104, 120 pages

    Article  PubMed  CAS  Google Scholar 

  • LaRue RS, Andrésdóttir V, Blanchard Y, Conticello SG, Derse D, Emerman M et al (2009) Guidelines for naming nonprimate APOBEC3 genes and proteins. J Virol 83(2):494–497

    Article  PubMed  CAS  Google Scholar 

  • Lecossier D, Bouchonnet F, Clavel F, Hance AJ (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300(5622):1112

    Article  PubMed  CAS  Google Scholar 

  • Li J, Potash MJ, Volsky DJ (2004) Functional domains of APOBEC3G required for antiviral activity. J Cell Biochem 92(3):560–572

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Guo F, Zhang L, Kleiman L, Cen S (2007) APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 282(44):32065–32074

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ma J, Zhang Q, Zhou J, Yin X, Zhai C et al (2011) Functional analysis of the two cytidine deaminase domains in APOBEC3G. Virology 414(2):130–136

    Article  PubMed  CAS  Google Scholar 

  • Li M, Shandilya SM, Carpenter MA, Rathore A, Brown WL, Perkins AL et al (2012) First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G. ACS Chem Biol 7(3):506–517

    Article  PubMed  CAS  Google Scholar 

  • Liddament MT, Brown WL, Schumacher AJ, Harris RS (2004) APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14(15):1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Löchelt M, Romen F, Bastone P, Muckenfuss H, Kirchner N, Kim YB et al (2005) The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc Natl Acad Sci USA 102(22):7982–7987

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA 96(4):1492–1497

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Liu B, Xiao Z, Yu Y, Yu X, Gorelick R, Yu XF (2004) Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 78(21):11841–11852

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Wang T, Liu B, Tian C, Xiao Z, Kappes J, Yu XF (2007) Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 81(13):7238–7248

    Article  PubMed  CAS  Google Scholar 

  • Madani N, Kabat D (1998) An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J Virol 72(12):10251–10255

    PubMed  CAS  Google Scholar 

  • Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424(6944):99–103

    Article  PubMed  CAS  Google Scholar 

  • Mangeat B, Turelli P, Liao S, Trono D (2004) A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem 279(15):14481–14483

    Article  PubMed  CAS  Google Scholar 

  • Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69(8): 5087–5094

    PubMed  CAS  Google Scholar 

  • Mansky LM, Preveral S, Selig L, Benarous R, Benichou S (2000) The interaction of Vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J Virol 74(15):7039–7047

    Article  PubMed  CAS  Google Scholar 

  • Marin M, Rose KM, Kozak SL, Kabat D (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9(11):1398–1403

    Article  PubMed  CAS  Google Scholar 

  • Mbisa JL, Barr R, Thomas JA, Vandegraaff N, Dorweiler IJ, Svarovskaia ES et al (2007) Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 81(13):7099–7110

    Article  PubMed  CAS  Google Scholar 

  • Mbisa JL, Bu W, Pathak VK (2010) APOBEC3F and APOBEC3G inhibit HIV-1 DNA integration by different mechanisms. J Virol 84(10):5250–5259

    Article  PubMed  CAS  Google Scholar 

  • Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabuzda D (2004) Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem 279(9):7792–7798

    Article  PubMed  CAS  Google Scholar 

  • Miyagi E, Opi S, Takeuchi H, Khan M, Goila-Gaur R, Kao S, Strebel K (2007) Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol 81(24):13346–13353

    Article  PubMed  CAS  Google Scholar 

  • Miyagi E, Brown CR, Opi S, Khan M, Goila-Gaur R, Kao S et al (2010) Stably expressed APOBEC3F has negligible antiviral activity. J Virol 84(21):11067–11075

    Article  PubMed  CAS  Google Scholar 

  • Muckenfuss H, Hamdorf M, Held U, Perkovic M, Lower J, Cichutek K et al (2006) APOBEC3 proteins inhibit human LINE-1 retrotransposition. J Biol Chem 281(31):22161–22172

    Article  PubMed  CAS  Google Scholar 

  • Mulder LC, Harari A, Simon V (2008) Cytidine deamination induced HIV-1 drug resistance. Proc Natl Acad Sci USA 105(14):5501–5506

    Article  PubMed  CAS  Google Scholar 

  • Navarro F, Bollman B, Chen H, Konig R, Yu Q, Chiles K, Landau NR (2005) Complementary function of the two catalytic domains of APOBEC3G. Virology 333(2):374–386

    Article  PubMed  CAS  Google Scholar 

  • Neil S, Martin F, Ikeda Y, Collins M (2001) Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol 75(12):5448–5456

    Article  PubMed  CAS  Google Scholar 

  • Newman EN, Holmes RK, Craig HM, Klein KC, Lingappa JR, Malim MH, Sheehy AM (2005) Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 15(2):166–170

    Article  PubMed  CAS  Google Scholar 

  • Nowarski R, Britan-Rosich E, Shiloach T, Kotler M (2008) Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase. Nat Struct Mol Biol 15(10):1059–1066

    Article  PubMed  CAS  Google Scholar 

  • OhAinle M, Kerns JA, Malik HS, Emerman M (2006) Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. J Virol 80(8):3853–3862

    Article  PubMed  CAS  Google Scholar 

  • OhAinle M, Kerns JA, Li MM, Malik HS, Emerman M (2008) Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 4(3):249–259

    Article  PubMed  CAS  Google Scholar 

  • Okeoma CM, Lovsin N, Peterlin BM, Ross SR (2007) APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature 445(7130):927–930

    Article  PubMed  CAS  Google Scholar 

  • Opi S, Takeuchi H, Kao S, Khan MA, Miyagi E, Goila-Gaur R et al (2006) Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol 80(10):4673–4682

    Article  PubMed  CAS  Google Scholar 

  • Pace C, Keller J, Nolan D, James I, Gaudieri S, Moore C, Mallal S (2006) Population level analysis of human immunodeficiency virus type 1 hypermutation and its relationship with APOBEC3G and vif genetic variation. J Virol 80(18):9259–9269

    Article  PubMed  CAS  Google Scholar 

  • Pathak VK, Temin HM (1990) Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci USA 87(16):6019–6023

    Article  PubMed  CAS  Google Scholar 

  • Peng G, Greenwell-Wild T, Nares S, Jin W, Lei KJ, Rangel ZG et al (2007) Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110(1):393–400

    Article  PubMed  CAS  Google Scholar 

  • Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J et al (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472(7343):361–365

    Article  PubMed  CAS  Google Scholar 

  • Piantadosi A, Humes D, Chohan B, McClelland RS, Overbaugh J (2009) Analysis of the percentage of human immunodeficiency virus type 1 sequences that are hypermutated and markers of disease progression in a longitudinal cohort, including one individual with a partially defective Vif. J Virol 83(16):7805–7814

    Article  PubMed  CAS  Google Scholar 

  • Pillai SK, Wong JK, Barbour JD (2008) Turning up the volume on mutational pressure: is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3). Retrovirology 5:26

    Article  PubMed  Google Scholar 

  • Pillai SK, Abdel-Mohsen M, Guatelli J, Skasko M, Monto A, Fujimoto K et al (2012) Role of retroviral restriction factors in the interferon-alpha-mediated suppression of HIV-1 in vivo. Proc Natl Acad Sci USA 109(8):3035–3040

    Article  PubMed  CAS  Google Scholar 

  • Powell RD, Holland PJ, Hollis T, Perrino FW (2011) Aicardi-Goutières syndrome gene and HIV-1 restriction factor SAMHD1 Is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 286(51):43596–43600

    Article  PubMed  CAS  Google Scholar 

  • Priet S, Gros N, Navarro JM, Boretto J, Canard B, Querat G, Sire J (2005) HIV-1-associated uracil DNA glycosylase activity controls dUTP misincorporation in viral DNA and is essential to the HIV-1 life cycle. Mol Cell 17(4):479–490

    Article  PubMed  CAS  Google Scholar 

  • Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135(7): 1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Rausch JW, Chelico L, Goodman MF, Le Grice SF (2009) Dissecting APOBEC3G substrate specificity by nucleoside analog interference. J Biol Chem 284(11):7047–7058

    Article  PubMed  CAS  Google Scholar 

  • Reddy K, Winkler CA, Werner L, Mlisana K, Abdool Karim SS, Ndung’u T (2010) APOBEC3G expression is dysregulated in primary HIV-1 infection and polymorphic variants influence CD4+ T-cell counts and plasma viral load. AIDS 24(2):195–204

    Article  PubMed  CAS  Google Scholar 

  • Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, Harris RS (2010) Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res 38(13):4274–4284

    Article  PubMed  CAS  Google Scholar 

  • Refsland EW, Hultquist JF, Harris RS (2012) Endogenous origins of HIV-1 G-to-A hypermutation. PLoS Pathog 8(7):e1002800

    Article  PubMed  CAS  Google Scholar 

  • Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM et al (2009) Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832

    Article  PubMed  CAS  Google Scholar 

  • Russell RA, Wiegand HL, Moore MD, Schafer A, McClure MO, Cullen BR (2005) Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors. J Virol 79(14):8724–8731

    Article  PubMed  CAS  Google Scholar 

  • Russell RA, Moore MD, Hu WS, Pathak VK (2009) APOBEC3G induces a hypermutation gradient: purifying selection at multiple steps during HIV-1 replication results in levels of G-to-A mutations that are high in DNA, intermediate in cellular viral RNA, and low in virion RNA. Retrovirology 6:16

    Article  PubMed  CAS  Google Scholar 

  • Sadler HA, Stenglein MD, Harris RS, Mansky LM (2010) APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J Virol 84(14):7396–7404

    Article  PubMed  CAS  Google Scholar 

  • Santa-Marta M, da Silva FA, Fonseca AM, Goncalves J (2005) HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. J Biol Chem 280(10):8765–8775

    Article  PubMed  CAS  Google Scholar 

  • Sawyer SL, Emerman M, Malik HS (2004) Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2(9):E275

    Article  PubMed  CAS  Google Scholar 

  • Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430(6999):569–573

    Article  PubMed  CAS  Google Scholar 

  • Schafer A, Bogerd HP, Cullen BR (2004) Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 328(2): 163–168

    Article  PubMed  CAS  Google Scholar 

  • Schröfelbauer B, Chen D, Landau NR (2004) A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci USA 101(11):3927–3932

    Article  PubMed  CAS  Google Scholar 

  • Schröfelbauer B, Yu Q, Zeitlin SG, Landau NR (2005) Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG uracil-DNA glycosylases. J Virol 79(17):10978–10987

    Article  PubMed  CAS  Google Scholar 

  • Schumacher AJ, Haché G, MacDuff DA, Brown WL, Harris RS (2008) The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD, and human immunodeficiency virus type 1 restriction. J Virol 82(6):2652–2660

    Article  PubMed  CAS  Google Scholar 

  • Schwartz O, Marechal V, Danos O, Heard JM (1995) Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell. J Virol 69(7):4053–4059

    PubMed  CAS  Google Scholar 

  • Shandilya SM, Nalam MN, Nalivaika EA, Gross PJ, Valesano JC, Shindo K et al (2010) Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces. Structure 18(1):28–38

    Article  PubMed  CAS  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650

    Article  PubMed  CAS  Google Scholar 

  • Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9(11):1404–1407

    Article  PubMed  CAS  Google Scholar 

  • Shindo K, Takaori-Kondo A, Kobayashi M, Abudu A, Fukunaga K, Uchiyama T (2003) The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J Biol Chem 278(45):44412–44416

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhtenko LS, Lushnikov AY, Li M, Lackey L, Harris RS, Lyubchenko YL (2011) Atomic force microscopy studies provide direct evidence for dimerization of the HIV restriction factor APOBEC3G. J Biol Chem 286(5):3387–3395

    Article  PubMed  CAS  Google Scholar 

  • Simon JH, Malim MH (1996) The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J Virol 70(8):5297–5305

    PubMed  CAS  Google Scholar 

  • Simon JH, Gaddis NC, Fouchier RA, Malim MH (1998) Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med 4(12):1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Simon V, Zennou V, Murray D, Huang Y, Ho DD, Bieniasz PD (2005) Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog 1(1):e6

    Article  PubMed  CAS  Google Scholar 

  • Smith JL, Pathak VK (2010) Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif. J Virol 84(24):12599–12608

    Article  PubMed  CAS  Google Scholar 

  • Soros VB, Yonemoto W, Greene WC (2007) Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog 3(2):e15

    Article  PubMed  CAS  Google Scholar 

  • Sova P, Volsky DJ (1993) Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. J Virol 67(10):6322–6326

    PubMed  CAS  Google Scholar 

  • Stenglein MD, Harris RS (2006) APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem 281(25):16837–16841

    Article  PubMed  CAS  Google Scholar 

  • Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS (2010) APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol 17(2):222–229

    Article  PubMed  CAS  Google Scholar 

  • Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134(4):587–598

    Article  PubMed  CAS  Google Scholar 

  • Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA (1990) HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9(5):1551–1560

    PubMed  CAS  Google Scholar 

  • Stopak K, de Noronha C, Yonemoto W, Greene WC (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12(3):591–601

    Article  PubMed  CAS  Google Scholar 

  • Strebel K, Daugherty D, Clouse K, Cohen D, Folks T, Martin MA (1987) The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328(6132):728–730

    Article  PubMed  CAS  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427(6977):848–853

    Article  PubMed  CAS  Google Scholar 

  • Sunseri N, O’Brien M, Bhardwaj N, Landau NR (2011) Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 85(13):6263–6274

    Article  PubMed  CAS  Google Scholar 

  • Suspène R, Sommer P, Henry M, Ferris S, Guetard D, Pochet S et al (2004) APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32(8):2421–2429

    Article  PubMed  CAS  Google Scholar 

  • Suspène R, Rusniok C, Vartanian JP, Wain-Hobson S (2006) Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Nucleic Acids Res 34(17):4677–4684

    Article  PubMed  CAS  Google Scholar 

  • Svarovskaia ES, Xu H, Mbisa JL, Barr R, Gorelick RJ, Ono A et al (2004) Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 279(34):35822–35828

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Sarkis PT, Wang T, Tian C, Yu XF (2009) Sole copy of Z2-type human cytidine deaminase APOBEC3H has inhibitory activity against retrotransposons and HIV-1. FASEB J 23(1): 279–287

    Article  PubMed  CAS  Google Scholar 

  • Thielen BK, McNevin JP, McElrath MJ, Hunt BV, Klein KC, Lingappa JR (2010) Innate immune signaling induces high levels of TC-specific deaminase activity in primary monocyte-derived cells through expression of APOBEC3A isoforms. J Biol Chem 285(36):27753–27766

    Article  PubMed  CAS  Google Scholar 

  • Tian C, Wang T, Zhang W, Yu XF (2007) Virion packaging determinants and reverse transcription of SRP RNA in HIV-1 particles. Nucleic Acids Res 35(21):7288–7302

    Article  PubMed  CAS  Google Scholar 

  • Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9(9):1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Turelli P, Mangeat B, Jost S, Vianin S, Trono D (2004) Inhibition of hepatitis B virus replication by APOBEC3G. Science 303(5665):1829

    Article  PubMed  Google Scholar 

  • Ulenga NK, Sarr AD, Hamel D, Sankale JL, Mboup S, Kanki PJ (2008a) The level of APOBEC3G (hA3G)-related G-to-A mutations does not correlate with viral load in HIV type 1-infected individuals. AIDS Res Hum Retroviruses 24(10):1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Ulenga NK, Sarr AD, Thakore-Meloni S, Sankale JL, Eisen G, Kanki PJ (2008b) Relationship between human immunodeficiency type 1 infection and expression of human APOBEC3G and APOBEC3F. J Infect Dis 198(4):486–492

    Article  PubMed  Google Scholar 

  • Vartanian JP, Meyerhans A, Asjo B, Wain-Hobson S (1991) Selection, recombination, and G → A hypermutation of human immunodeficiency virus type 1 genomes. J Virol 65(4):1779–1788

    PubMed  CAS  Google Scholar 

  • Vartanian JP, Meyerhans A, Sala M, Wain-Hobson S (1994) G → A hypermutation of the human immunodeficiency virus type 1 genome: evidence for dCTP pool imbalance during reverse transcription. Proc Natl Acad Sci USA 91(8):3092–3096

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Perez JA, Ormsby CE, Hernandez-Juan R, Torres KJ, Reyes-Teran G (2009) APOBEC3G mRNA expression in exposed seronegative and early stage HIV infected individuals decreases with removal of exposure and with disease progression. Retrovirology 6:23

    Article  PubMed  CAS  Google Scholar 

  • von Schwedler U, Song J, Aiken C, Trono D (1993) Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 67(8):4945–4955

    Google Scholar 

  • Wang T, Tian C, Zhang W, Luo K, Sarkis PT, Yu L (2007) 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virol 81(23):13112–13124

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Tian C, Zhang W, Sarkis PT, Yu XF (2008) Interaction with 7SL RNA but not with HIV-1 genomic RNA or P bodies is required for APOBEC3F virion packaging. J Mol Biol 375(4):1098–1112

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Ao Z, Chen L, Kobinger G, Peng J, Yao X (2012) The cellular antiviral protein APOBEC3G interacts with HIV-1 reverse transcriptase and inhibits its function during viral replication. J Virol 86(7):3777–3786

    Article  PubMed  CAS  Google Scholar 

  • Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R et al (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460(7256):711–716

    Article  PubMed  CAS  Google Scholar 

  • Wedekind JE, Gillilan R, Janda A, Krucinska J, Salter JD, Bennett RP et al (2006) Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J Biol Chem 281(50):38122–38126

    Article  PubMed  CAS  Google Scholar 

  • Wiegand HL, Doehle BP, Bogerd HP, Cullen BR (2004) A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J 23(12):2451–2458

    Article  PubMed  CAS  Google Scholar 

  • Wood N, Bhattacharya T, Keele BF, Giorgi E, Liu M, Gaschen B et al (2009) HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog 5(5):e1000414

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Svarovskaia ES, Barr R, Zhang Y, Khan MA, Strebel K, Pathak VK (2004) A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc Natl Acad Sci USA 101(15):5652–5657

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK (2007) Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology 360(2):247–256

    Article  PubMed  CAS  Google Scholar 

  • Yan N, O’Day E, Wheeler LA, Engelman A, Lieberman J (2011) HIV DNA is heavily uracilated, which protects it from autointegration. Proc Natl Acad Sci USA 108(22):9244–9249

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Chen K, Zhang C, Huang S, Zhang H (2007a) Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. J Biol Chem 282(16):11667–11675

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Guo F, Cen S, Kleiman L (2007b) Inhibition of initiation of reverse transcription in HIV-1 by human APOBEC3F. Virology 365(1):92–100

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302(5647):1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Konig R, Pillai S, Chiles K, Kearney M, Palmer S et al (2004) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11(5):435–442

    Article  PubMed  CAS  Google Scholar 

  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61(2):213–222

    Article  PubMed  CAS  Google Scholar 

  • Zennou V, Perez-Caballero D, Gottlinger H, Bieniasz PD (2004) APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol 78(21):12058–12061

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424(6944):94–98

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Du J, Evans SL, Yu Y, Yu XF (2011) T-cell differentiation factor CBFβ regulates HIV-1 Vif-mediated evasion of host restriction. Nature 481(7381):376–379

    PubMed  Google Scholar 

  • Zhen A, Wang T, Zhao K, Xiong Y, Yu XF (2010) A single amino acid difference in human APOBEC3H variants determines HIV-1 Vif sensitivity. J Virol 84(4):1902–1911

    Article  PubMed  CAS  Google Scholar 

  • Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM (2004) Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78(11):6073–6076

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institutes of Health (R01 AI064046 and P01 GM091743 to RSH). JSA was supported in part by the National Institute on Drug Abuse and by the University of Minnesota Medical Scientist Training Program (F30 DA026310 and T32 GM008244, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben S. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Albin, J.S., Harris, R.S. (2013). APOBECs and Their Role in Proviral DNA Synthesis. In: LeGrice, S., Gotte, M. (eds) Human Immunodeficiency Virus Reverse Transcriptase. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7291-9_12

Download citation

Publish with us

Policies and ethics