Skip to main content

The Use of Tubular Structures as Cores for Sandwich Panels Subjected to Dynamic and Blast Loading: A Current “State of the Art”

  • Chapter
  • First Online:
Blast Mitigation

Abstract

Blast loads from explosion (either accidental or intentional) can be mitigated by using thick armor systems that are often heavy and significantly affect the payload of the structure. In the design of structures for blast protection, sacrificial claddings which consist of high-energy-absorbing components are often used. Sandwich-type cladding structures with lightweight cores are now becoming more popular for blast mitigation applications, including armor systems, because of their capability to carry transverse loads with minimal weight penalty and absorb large amount of plastic energy. The choice of the sandwich core has significant influence on the performance of the sandwich panels. Typical cores are wood, different foam materials, or tubular structures. Because of its high energy absorption capabilities, tubular structures are commonly used. This chapter presents a “state of the art” on the use of tubular structures as cores for sandwich panels subjected to blast and dynamic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander JM (1960) An approximate analysis of the collapse of thin cylindrical columns. Quart J Mech Appl Math 13(1):10–15

    Article  MathSciNet  MATH  Google Scholar 

  • Alghamdi AAA (2001) Collapsible impact energy absorbers: an overview. Thin Wall Struct 39(2):189–213

    Article  MathSciNet  Google Scholar 

  • Chung Kim Yuen S, Nurick GN (2008) The energy absorbing characteristics of tubular structures with geometric and material modifications: an overview. Appl Mech Rev 61(2):020802-1–020802-15. doi:10.1115/1.2885138

    Google Scholar 

  • Chung Kim Yuen S, Nurick GN, Starke RA (2008) The energy absorption characteristics of double-cell tubular profiles. Lat Am J Solid Struct 5(4):289–317

    Google Scholar 

  • Chung Kim Yuen S, Nurick GN, Theobald MD, Langdon GS (2009) Chapter 10, Sandwich panels subjected to blast loading. In: Shukla A, Ravichandran Y, Rajapakse Y (eds) Dynamic failure of materials and structures. Springer, New York, pp 297–325. ISBN ISBN: 197814419 04454

    Chapter  Google Scholar 

  • Chung Kim Yuen S, Nurick GN, Witbeen HL (2011) The response of sandwich panels made of thin-walled tubes subjected to axial load. Int J Protect Struct 2(4):477–498

    Article  Google Scholar 

  • Fan Z, Shen J, Lu G (2011) Investigation of lateral crushing of sandwich tubes. Procedia Eng 14:442–449. doi:10.1016/j.proeng.2011.07.055

    Article  Google Scholar 

  • Gupta NK, Khullar A (1994) Lateral collapse of orthogonal and non-orthogonal cross-layered arrays of square and rectangular tubes. Int J Mech Sci 36(5):449–467. doi:10.1016/0020-7403(94)90048-5

    Article  Google Scholar 

  • Gupta NK, Khullar A (1995) Collapse load analysis of square and rectangular tubes subjected to transverse in-plane loading. Thin Wall Struct 21(4):345–358. doi:10.1016/0263-8231(95)93619-W

    Article  Google Scholar 

  • Gupta NK, Sekhon GS, Gupta PK (2001) A study of lateral collapse of square and rectangular metallic tubes. Thin Wall Struct 39(9):745–772. doi:10.1016/S0263-8231(01)00033-7

    Article  Google Scholar 

  • Gupta NK, Sekhon GS, Gupta PK (2005) Study of lateral compression of round metallic tubes. Thin Wall Struct 43(6):895–922. doi:10.1016/j.tws.2004.12.002

    Article  Google Scholar 

  • Gupta NK, Velmurugan R (1997) An analysis of axial crushing of composite tubes. J Comp Mater 31(13):1262–1286

    Article  Google Scholar 

  • Hall IW, Guden M, Claar TD (2002) Transverse and longitudinal crushing of aluminum-foam filled tubes. Scripta Mater 46(7):513–518. doi:10.1016/S1359-6462(02)00024-6

    Article  Google Scholar 

  • Jones N (2003) Several phenomena in structural impact and structural crashworthiness. Eur J Mech A Solid 22(5):693–707

    Article  MATH  Google Scholar 

  • Jones N (2011) Structural impact, 2nd edn. Cambridge University Press, Cambridge, pp 1–604. ISBN ISBN: 9781107010963

    Book  Google Scholar 

  • Kakogiannis D, Van Hemelrijck D, Wastiels J, Van Ackeren J, Palanivelu S, Van Paepegem W, Nurick GN, Chung Kim Yuen S (2009) Experimental and numerical study of pultruded composite tubes under blast loading. In: Dyckmans G (ed) Proceedings of the 9th international DYMAT conference on the mechanical and physical behaviour of materials under dynamic loading (DYMAT 2009), Brussels, Belgium, pp. 1677–1683. (Vol 2) EDP Sciences, France

    Google Scholar 

  • Lu G, Yu T (2003) Energy absorption of structures and materials. Woodhead Publishing Limited, Cambridge, pp 1–403. ISBN ISBN: 1 85573 688 8

    Book  Google Scholar 

  • Palanivelu S (2011) Energy absorption of crushable tubes for protective structures under static impact and blast loading. Universiteit Gent, Belgium, pp 1–590. ISBN ISBN: 978-90-8578-438-8

    Google Scholar 

  • Palanivelu S, Paepegem WV, Degrieck J, Vantomme J, Kakogiannis D, Ackeren JV, Hemelrijck DV, Wastiels J (2010a) Comparison of the crushing performance of hollow and foam-filled small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures. Compos B Eng 41(6):434–445. doi:10.1016/j.compositesb.2010.05.009

    Article  Google Scholar 

  • Palanivelu S, Paepegem WV, Degrieck J, Vantomme J, Kakogiannis D, Ackeren JV, Hemelrijck DV, Wastiels J (2011a) Crushing and energy absorption performance of different geometrical shapes of small-scale glass/polyester composite tubes under quasi-static loading conditions. Compos Struct 93(2):992–1007. doi:10.1016/j.compstruct.2010.06.021

    Article  Google Scholar 

  • Palanivelu S, Van Paepegem W, Degrieck J, De Pauw S, Vantomme J, Wastiels J, Kakogiannis D, Van Hemelrijck D (2011b) Low velocity axial impact crushing performance of empty recyclable metal beverage cans. Int J Impact Eng 38(7):622–636. doi:10.1016/j.ijimpeng.2011.02.008

    Article  Google Scholar 

  • Palanivelu S, Van Paepegem W, Degrieck J, Kakogiannis D, Van Ackeren J, Van Hemelrijck D, Wastiels J, Vantomme J (2010b) Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures. Polymer Test 29(3):381–396. doi:10.1016/j.polymertesting.2010.01.003

    Article  Google Scholar 

  • Palanivelu S, Van Paepegem W, Degrieck J, Kakogiannis D, Van Ackeren J, Van Hemelrijck D, Wastiels J, Vantomme J (2010c) Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: central delamination and triggering modelling. Polymer Test 29(6):729–741. doi:10.1016/j.polymertesting.2010.05.010

    Article  Google Scholar 

  • Palanivelu S, Van Paepegem W, Degrieck J, Reymen B, Ndambi JM, Vantomme J, Kakogiannis D, Wastiels J, Van Hemelrijck D (2011c) Close-range blast loading on empty recyclable metal beverage cans for use in sacrificial cladding structure. Eng Struct 33(6):1966–1987. doi:10.1016/j.engstruct.2011.02.034

    Article  Google Scholar 

  • Palanivelu S, Van Paepegem W, Degrieck J, Reymen B, Segers E, Ndambi JM, Vantomme J, Van Ackeren J, Wastiels J, Kakogiannis D, Van Hemelrijck D (2011d) Performance of sacrificial cladding structure made of empty recyclable metal beverage cans under large-scale air blast load. Appl Mech Mater 82:416–421. doi:10.4028/www.scientific.net/AMM.82.416

    Article  Google Scholar 

  • Palanivelu S, Van Paepegem W, Degrieck J, Van Ackeren J, Kakogiannis D, Van Hemelrijck D, Wastiels J, Vantomme J (2010d) Experimental study on the axial crushing behaviour of pultruded composite tubes. Polymer Test 29(2):224–234. doi:10.1016/j.polymertesting.2009.11.005

    Article  Google Scholar 

  • Palanivelu S, Van Paepegem W, Degrieck J, Van Ackeren J, Kakogiannis D, Wastiels J, Van Hemelrijck D, Vantomme J (2010e) Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam: part II. Multiple delaminations and initial geometric imperfections. Polymer Test 29(7):803–814. doi:10.1016/j.polymertesting.2010.07.005

    Article  Google Scholar 

  • Pitarresi G, Carruthers JJ, Robinson AM, Torre G, Kenny JM, Ingleton S, Velecela O, Found MS (2007) A comparative evaluation of crashworthy composite sandwich structures. Compos Struct 78(1):34–44. doi:10.1016/j.compstruct.2005.08.008

    Article  Google Scholar 

  • Pugsley AG, Macaulay M (1960) The large scale crumpling of thin cylindrical columns. Quart J Mech Appl Math 13(1):1–9

    Article  MathSciNet  Google Scholar 

  • Reddy TY, Reid SR (1979) Lateral compression of tubes and tube-systems with side constraints. Int J Mech Sci 21(3):187–199. doi:10.1016/0020-7403(79)90023-7

    Article  Google Scholar 

  • Reddy TY, Reid SR (1980) Phenomena associated with the crushing of metal tubes between rigid plates. Int J Solid Struct 16(6):545–562. doi:10.1016/0020-7683(80)90005-0

    Article  Google Scholar 

  • Reid SR (1993) Plastic deformation mechanisms in axial compressed metal tubes used as impact energy absorbers. Int J Mech Sci 35(12):1035–1052

    Article  Google Scholar 

  • Reid SR, Drew SLK, Carney JF III (1983) Energy absorbing capacities of braced metal tubes. Int J Mech Sci 25(9/10):649–667. doi:10.1016/0020-7403(83)90074-7

    Article  Google Scholar 

  • Reid SR, Reddy TY (1978) Effect of strain hardening on the lateral compression of tubes between rigid plates. Int J Solid Struct 14(3):213–225. doi:10.1016/0020-7683(78)90026-4

    Article  Google Scholar 

  • Seitzberger M, Rammerstorfer RF, Degischer HP, Gradinger R (1997) Crushing of axially compressed steel tubes filled with aluminium foam. Acta Mech 125:93–105

    Article  MATH  Google Scholar 

  • Seitzberger M, Rammerstorfer FG, Gradinger R, Degischer HP, Blaimschein M, Walch C (2000) Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. Int J Solid Struct 37(30):4125–4147

    Article  Google Scholar 

  • Shim VPW, Stronge WJ (1986a) Lateral crushing of thin-walled tubes between cylindrical indenters. Int J Mech Sci 28(10):683–707. doi:10.1016/0020-7403(86)90013-5

    Article  Google Scholar 

  • Shim VPW, Stronge WJ (1986b) Lateral crushing in tightly packed arrays of thin-walled metal tubes. Int J Mech Sci 28(10):709–728. doi:10.1016/0020-7403(86)90014-7

    Article  Google Scholar 

  • Stronge WJ, Shim VPW (1987) Dynamic crushing of a ductile cellular array. Int J Mech Sci 29(6):381–406. doi:10.1016/0020-7403(87)90001-4

    Article  Google Scholar 

  • Tarlochan F, Ramesh S, Harpreet S (2012) Advanced composite sandwich structure design for energy absorption applications: blast protection and crashworthiness. Compos B Eng 43(5):2198–2208. doi:10.1016/j.compositesb.2012.02.025

    Article  Google Scholar 

  • Theobald MD, Nurick GN (2007) Numerical investigation of the response of sandwich-type panels using thin-walled tubes subject to blast loads. Int J Impact Eng 34(1):134–156. doi:10.1016/j.ijimpeng.2006.04.003

    Article  Google Scholar 

  • Theobald MD, Nurick GN (2010) Experimental and numerical analysis of tube-core claddings under blast loads. Int J Impact Eng 37(3):333–348. doi:10.1016/j.ijimpeng.2009.10.003

    Article  Google Scholar 

  • Xiong J, Ma L, Wu L, Li M, Vaziri A (2011) Mechanical behavior of sandwich panels with hollow Al-Si tubes core construction. Mater Design 32(2):592–597. doi:10.1016/j.matdes.2010.08.016

    Article  Google Scholar 

  • Xue Z, Hutchinson JW (2004) A comparative study of impulse-resistant metal sandwich plates. Int J Impact Eng 30(10):1283–1305

    Article  Google Scholar 

  • Zhu F, Lu G (2007) A review of blast and impact of metallic and sandwich structures, EJSE 92–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Nurick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yuen, S.C.K., Nurick, G.N. (2014). The Use of Tubular Structures as Cores for Sandwich Panels Subjected to Dynamic and Blast Loading: A Current “State of the Art”. In: Shukla, A., Rajapakse, Y., Hynes, M. (eds) Blast Mitigation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7267-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7267-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7266-7

  • Online ISBN: 978-1-4614-7267-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics