Skip to main content

Remarks on Penrose Tilings

  • Chapter
  • First Online:
The Mathematics of Paul Erdős I

Abstract

This paper will cover some details on Penrose tilings presented in lectures over the years but never published in print before. The main topics are: (i) the characterizability of Penrose tilings by means of a local rule that does not refer to arrows on the edges of the tiles, and (ii) the fact that the Ammann quasigrid of the inflation of a Penrose tiling is topologically equivalent to the pentagrid that generates the original tiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. G. de Bruijn, Algebraic theory of Penrose’s non-periodic tilings of the plane. Kon. Nederl. Akad. Wetensch. Proc. Ser. A 84 ( = Indagationes Mathematicae 43), 38–52 and 53–66 (1981). Reprinted in: P. J. Steinhardt and Stellan Ostlund: The Physics of Quasicrystals, World Scientific Publ., Singapore, New Jersey, Hong Kong.

    Google Scholar 

  2. N.G. de Bruijn, Dualization of multigrids. In: Proceedings of the International Workshop Aperiodic Crystals, Les Houches 1986. Journal de Physique, Vol. 47, Colloque C3, supplement to nr. 7, July 1986, pp. 9–18.

    Google Scholar 

  3. N. G. de Bruijn, A riffle shuffle card trick and its relation to quasicrystal theory. Nieuw Archief Wiskunde (4) 5 (1987) 285–301.

    Google Scholar 

  4. N. G. de Bruijn, Symmetry and quasisymmetry. In: Symmetrie in Geistes- und Naturwissenschaft. Herausg. R. Wille. Springer Verlag 1988, pp. 215–233.

    Google Scholar 

  5. N. G. de Bruijn, Updown generation of Penrose tilings, Indagationes Mathematicae, N.S., 1, pp. 201–219 (1990).

    Google Scholar 

  6. Martin Gardner, Mathematical games. Extraordinary nonperiodic tiling that enriches the theory of tiles. Scientific American 236 (1) 110–121 (Jan. 1977).

    Google Scholar 

  7. Branko Grünbaum and G. C. Shephard. Tilings and patterns. New York, W.H. Freeman and Co. 1986.

    Google Scholar 

  8. R. Penrose. Pentaplexity. Mathematical Intelligencer vol 2 (1) pp. 32–37 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. E. S. Socolar and P. J. Steinhardt. Quasicrystals. II. Unit cell configurations. Physical Rev. B Vol. 34 (1986), 617–647. Reprinted in: P.J. Steinhardt and Stellan Ostlund: The Physics of Quasicrystals, World Scientific Publ., Singapore, New Jersey, Hong Kong.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Bruijn, N.G. (2013). Remarks on Penrose Tilings. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős I. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7258-2_29

Download citation

Publish with us

Policies and ethics