Skip to main content

Ramsey Theory in the Work of Paul Erdős

  • Chapter
  • First Online:
The Mathematics of Paul Erdős II

Summary

Ramsey’s theorem was not discovered by P. Erdős. But perhaps one could say that Ramsey theory was created largely by him. This paper will attempt to demonstrate this claim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. M. Ajtai, J. Komlós and E. Szemerédi, A dense infinite Sidon sequence, European J. Comb. 2 (1981), 1–11.

    MATH  Google Scholar 

  2. N. Alon, Eigenvalues, geometric expanders, sorting in rounds and Ramsey theory, Combinatorica 3 (1986), 207–219.

    Article  Google Scholar 

  3. N. Alon, Explicit Ramsey graphs and orthonormal labelings, Electron. J. Combin. 1, R12 (1994), (8pp).

    Google Scholar 

  4. N. Alon, Discrete Mathematics: Methods and Challenges. In: Proc. of the ICM 2002, Bejing, China Higher Education Press 2003, 119–141.

    Google Scholar 

  5. N. Alon, V. Rödl, Sharp bounds for some multicolour Ramsey numbers, Combinatorica 25 (2005), 125–141.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Alon and J. Spencer, The Probabilistic Method, Wiley, New York, 1992.

    MATH  Google Scholar 

  7. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725–753.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. A. Behrend, On sets of integers which contain no three in arithmetic progression, Proc. Nat. Acad. Sci. 23 (1946), 331–332.

    Article  MathSciNet  Google Scholar 

  9. E. R. Berlekamp, A construction for partitions which avoid long arithmetic progressions, Canad. Math. Bull 11 (1968),409–414.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Bukh, and J. Matoušek, Erdős-Szekeres-type statements: Ramsey functions and decidability in dimension 1, arXiv: 1207.0705 v1 (3 July 2012).

    Google Scholar 

  11. J. Bukor, A note on the Folkman number F(3,3,5), Math. Slovaka 44 (4), (1994), 479–480.

    MathSciNet  MATH  Google Scholar 

  12. F. R. K. Chung, R. Cleve, and P. Dagum, A note on constructive lower bound for the Ramsey numbers R(3, t), J. Comb. Theory 57 (1993), 150–155.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasirandom graphs, Combinatorica 9 (1989), 345–362.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Chvátal and J. Komlos, Some combinatorial theorems on monotonicity, Canad. Math. Bull. 14, 2 (1971).

    Article  Google Scholar 

  15. V. Chvátal, V. Rödl, E. Szemerédi, and W. Trotter, The Ramsey number of graph with bounded maximum degree, J. Comb. Th. B, 34 (1983), 239–243.

    Article  MATH  Google Scholar 

  16. B. Codenotti, P. Pudlák and J. Resta, Some structural properties of low rand matrices related to computational complexity, Theoret. Comp. Sci. 235 (2000), 89–107.

    Article  MATH  Google Scholar 

  17. D. Conlon, A new upper bound for diagonal Ramsey numbers, Ann. Math. 170 (2009), 941–960.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Conlon, J. Fox and B. Sudakov, Two extensions of Ramsey’s theorem (to appear in Duke Math. Jour).

    Google Scholar 

  19. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symb. Comput. 9 (1987), 251–280.

    Article  MathSciNet  Google Scholar 

  20. Blanche Descartes, A three colour problem, Eureka 9 (1947), 21, Eureka 10 (1948), 24. (See also the solution to Advanced problem 1526, Amer. Math. Monthly 61 (1954), 352.)

    Google Scholar 

  21. W. Deuber, R. L. Graham, H. J. Prömel and B. Voigt, A canonical partition theorem for equivalence relations on \({\mathbb{Z}}^{t}\), J. Comb. Th. (A) 34 (1983), 331–339.

    Article  MATH  Google Scholar 

  22. G. A. Dirac, The structure of k-chromatic graphs, Fund. Math. 40 (1953), 42–55.

    MathSciNet  MATH  Google Scholar 

  23. A. Dudek and V. Rödl, On the Folkman number f(2, 3, 4), Experimental Math. 17 (2008), 63–67.

    Article  MATH  Google Scholar 

  24. P. Erdős, On sequences of integers no one of which divides the product of two others and on some related problems, Izv. Nanc. Ise. Inset. Mat. Mech. Tomsrk 2 (1938), 74–82.

    Google Scholar 

  25. P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.

    Article  MathSciNet  Google Scholar 

  26. P. Erdős, Problems and results in additive number theory, Colloque sur la Theorie des Numbres, Bruxelles (1955), 127–137.

    Google Scholar 

  27. P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959), 34–38.

    Article  MathSciNet  Google Scholar 

  28. P. Erdős, Graph theory and probability II, Canad. J. Math. 13 (1961), 346–352.

    Article  MathSciNet  Google Scholar 

  29. P. Erdős, Problems and result on finite and infinite graphs, In: Recent Advances in Graph Theory (ed. M. Fiedler), Academia, Prague (1975), 183–192.

    Google Scholar 

  30. P. Erdős, Art of Counting, MIT Press, 1973.

    Google Scholar 

  31. P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, L’ Enseignement Math. 28 (1980), 128 pp.

    Google Scholar 

  32. P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, and E. G. Straus, Euclidean Ramsey Theorem, J. Combin. Th. (A) 14 (1973), 341–363.

    Article  Google Scholar 

  33. P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, and E. G. Straus, Euclidean Ramsey Theorems II, In A. Hajnal, R. Rado and V. Sós, eds., Infinite and Finite Sets I, North Holland, Amsterdam, 1975, pp. 529–557.

    Google Scholar 

  34. P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, and E. G. Straus, Euclidean Ramsey Theorems III, In A. Hajnal, R. Rado and V. Sós, eds., Infinite and Finite Sets II, North Holland, Amsterdam, 1975, pp. 559–583.

    Google Scholar 

  35. P. Erdős and A. Hajnal, On chromatic number of set systems, Acta Math. Acad. Sci. Hungar. 17 (1966), 61–99.

    Article  MathSciNet  Google Scholar 

  36. P. Erdős and A. Hajnal, Some remarks on set theory IX, Mich. Math. J. 11 (1964), 107–112.

    Article  Google Scholar 

  37. P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Hungar. 16 (1965), 93–196.

    Article  Google Scholar 

  38. P. Erdős, J. Nešetřil and V. Rödl, Selectivity of hypergraphs, Colloq. Math. Soc. János Bolyai 37 (1984), 265–284.

    Google Scholar 

  39. P. Erdős, J. Nešetřil, and V. Rödl, On Pisier Type Problems and Results (Combinatorial Applications to Number Theory). In: Mathematics of Ramsey Theory (ed. J. Nešetřil and V. Rödl), Springer Verlag (1990), 214–231.

    Google Scholar 

  40. P. Erdős, J. Nešetřil, and V. Rödl, On colorings and independent sets (Pisier Type Theorems) (preprint).

    Google Scholar 

  41. P. Erdős and R. Rado, A construction of graphs without triangles having preassigned order and chromatic number, J. London Math. Soc. 35 (1960), 445–448.

    Article  MathSciNet  Google Scholar 

  42. P. Erdős and R. Rado, A combinatorial theorem, J. London Math. Soc. 25 (1950), 249–255.

    Article  MathSciNet  Google Scholar 

  43. P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. 3 (1951),417–439.

    Google Scholar 

  44. P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489.

    Article  MathSciNet  Google Scholar 

  45. P. Erdős and C. A. Rogers, The construction of certain graphs, Canad. J. Math. (1962), 702–707.

    Google Scholar 

  46. P. Erdős and G. Szekeres, A combinatorial problem in geometry, Composito Math. 2 (1935), 464–470.

    Google Scholar 

  47. P. Erdős and P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.

    Article  Google Scholar 

  48. P. Erdős and P. Turán, On a problem of Sidon in additive number theory and on some related problems, J. London Math. Soc. 16 (1941), 212–215.

    Article  MathSciNet  Google Scholar 

  49. M. Erickson, An upper bound for the Folkman number F(3, 3, 5), J. Graph Th. 17 (6), (1993), 679–68.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970), 19–24.

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Frankl, A constructive lower bound for Ramsey numbers, Ars Combinatorica 2 (1977), 297–302.

    MathSciNet  Google Scholar 

  52. P. Frankl and V. Rödl, A partition property of simplices in Euclidean space, J. Amer. Math. Soc. 3 (1990), 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  53. P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357–368.

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204–256.

    Article  MathSciNet  MATH  Google Scholar 

  55. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, 1981.

    MATH  Google Scholar 

  56. H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem, J. Analyze Math. 57 (1991), 61–85.

    MathSciNet  Google Scholar 

  57. T. Gerken, On empty convex hexagons in planar point sets, In: J. Goodman, J. Pach and R. Pollack (eds.), Twentieth Anniversary Volume, Disc. Comput. Geom, Springer, 2008, 1–34.

    Google Scholar 

  58. W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal 11 (2001), 465–588.

    Article  MathSciNet  MATH  Google Scholar 

  59. W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. Math. 166 (2007), 897–946.

    Article  MathSciNet  MATH  Google Scholar 

  60. R. L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Comb. Th. 4 (1968), 300.

    Article  MATH  Google Scholar 

  61. R. L. Graham, Euclidean Ramsey theory, in Handbook of Discrete and Computational Geometry, J. Goodman and J. O’Rourke, eds., CRC Press, 1997, 153–166.

    Google Scholar 

  62. R. L. Graham, Open problems in Euclidean Ramsey theory, Geombinatorics 13 (2004), 165–177.

    MathSciNet  MATH  Google Scholar 

  63. R. L. Graham, B. L. Rothschild, and J. Spencer, Ramsey theory, Wiley, 1980, 2nd edition, 1990.

    Google Scholar 

  64. B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math. 167 (2008), 481–547.

    Article  MathSciNet  MATH  Google Scholar 

  65. A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222–229.

    Article  MathSciNet  MATH  Google Scholar 

  66. P. Hell and R. L. Graham, On the history of the minimum spanning tree problem, Annals of Hist. Comp. 7 (1985), 43–57.

    Article  MathSciNet  MATH  Google Scholar 

  67. D. Hilbert, Über die irreducibilität ganzer rationaler funktionen mit ganzzahligen koefficienten, J. Reine und Angew. Math. 110 (1892), 104–129.

    Google Scholar 

  68. R. Irving, On a bound of Graham and Spencer for a graph-coloring constant, J. Comb. Th. B, 15 (1973), 200–203.

    Article  MathSciNet  MATH  Google Scholar 

  69. V. Jarník and M. Kössler, Sur les graphes minima, contenant n points donnés, Čas. Pěst. Mat. 63 (1934), 223–235.

    Google Scholar 

  70. J. B. Kelly and L. M. Kelly, Paths and circuits in critical graphs, Amer. J. Math. 76 (1954), 786–792.

    Article  MathSciNet  MATH  Google Scholar 

  71. A. J. Khinchine, Drei Perlen der Zahlen Theorie, Akademie Verlag, Berlin 1951 (reprinted Verlag Harri Deutsch, Frankfurt 1984).

    Google Scholar 

  72. J. H. Kim, The Ramsey number R(3, t) has order of magnitude t 2 ∕ logt, Random Structures and Algorithms 7 (1995), 173–207.

    Article  MathSciNet  MATH  Google Scholar 

  73. V. A. Koshelev, The Erdős-Szekeres problem, Dokl. Akad. Nauk.,415 (2007), 734–736.

    Google Scholar 

  74. I. Kříž, Permutation groups in Euclidean Ramsey theory, Proc. Amer. Math. Soc. 112 (1991), 899–907.

    MathSciNet  MATH  Google Scholar 

  75. G. Kun, Constraints, MMSNP and expander relational structures, arXiv: 0706.1701 (2007).

    Google Scholar 

  76. A. Lange, S. Radziszowski, X. Xu, Use of MAX-CUT for Ramsey arrowing of triangles, arXiv:1207.3750 (Jul. 16, 2012).

    Google Scholar 

  77. I. Leader, P. Russell and M. Walters, Transitive sets in Euclidean Ramsey theory, J. Comb. Th. (A), 119 (2012), 382–396.

    Article  MathSciNet  MATH  Google Scholar 

  78. I. Leader, P. Russell and M. Walters, Transitive sets and cyclic quadrilaterals, J. Comb. 2 (2011), 457–462.

    MathSciNet  MATH  Google Scholar 

  79. H. Lefman, A canonical version for partition regular systems of linear equations, J. Comb. Th. (A) 41 (1986), 95–104.

    Article  Google Scholar 

  80. H. Lefman and V. Rödl, On Erdős-Rado numbers, Combinatorica 15 (1995), 85–104.

    Article  MathSciNet  Google Scholar 

  81. L. Lovász, On the chromatic number of finite set-systems, Acta Math. Acad. Sci. Hungar. 19 (1968), 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  82. L. Lu, Explicit construction of small Folkman graphs, SIAM J. on Disc. Math. 21 (2008), 1053–1060.

    Article  Google Scholar 

  83. A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan Graphs, Combinatorica 8(3) (1988),261–277.

    Article  MathSciNet  MATH  Google Scholar 

  84. G. A. Margulis, Explicit constructions of concentrators, Problemy Peredachi Informatsii 9, 4 (1975), 71–80.

    MathSciNet  Google Scholar 

  85. J. Matoušek, and V. Rödl, On Ramsey sets in spheres, J. Comb. Th. (A) 70 (1995), 30–44.

    Google Scholar 

  86. J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3 (1955), 161–162.

    MathSciNet  MATH  Google Scholar 

  87. J. Nešetřil: For graphs there are only four types of hereditary Ramsey classes, J. Comb. Th. B 46 (1989), 127–132.

    Article  MATH  Google Scholar 

  88. J. Nešetřil, Ramsey Theory, In: Handbook of Combinatorics, North Holland (1995), 1331–1403.

    Google Scholar 

  89. J. Nešetřil, H. Nešetřilová, The origins of minimal spanning tree algorithms, Bor˚uvka, Jarník, Dokumenta Math.(2012), 127–141.

    Google Scholar 

  90. J. Nešetřil and V. Rödl, A probabilistic graph theoretical method, Proc. Amer. Math. Soc. 72 (1978), 417–421.

    MathSciNet  MATH  Google Scholar 

  91. J. Nešetřil and V. Rödl, A short proof of the existence of highly chromatic graphs without short cycles, J. Combin. Th. B, 27 (1979), 225–227.

    Article  MATH  Google Scholar 

  92. J. Nešetřil and V. Rödl, Partition theory and its applications, in Surveys in Combinatorics, Cambridge Univ. Press, 1979, pp. 96–156.

    Google Scholar 

  93. J. Nešetřil and V. Rödl, Two proofs in combinatorial number theory, Proc. Amer. Math. Soc. 93, 1 (1985), 185–188.

    MathSciNet  MATH  Google Scholar 

  94. J. Nešetřil and V. Rödl, Type theory of partition properties of graphs, In: Recent Advances in Graph Theory (ed. M. Fiedler), Academia, Prague (1975), 405–412.

    Google Scholar 

  95. J. Nešetřil and P. Valtr, A Ramsey-type result in the plane, Combinatorics, Probability and Computing 3 (1994), 127–135.

    Article  MathSciNet  MATH  Google Scholar 

  96. C. M. Nicolás, The empty hexagon theorem, Disc. Comput. Geom. 38 (2) (2007), 389–397.

    Article  MATH  Google Scholar 

  97. M. Overmars, Finding sets of points without empty convex 6-gons, Disc. Comput. Geom. 29 (2003), 153–158.

    Article  MathSciNet  MATH  Google Scholar 

  98. J. Pelant and V. Rödl, On coverings of infinite dimensional metric spaces. In Topics in Discrete Math., vol. 8 (ed. J. Nešetřil), North Holland (1992), 75–81.

    Google Scholar 

  99. G. Pisier, Arithmetic characterizations of Sidon sets, Bull.Amer. Math.Soc. 8 (1983), 87–89.

    Article  MathSciNet  MATH  Google Scholar 

  100. D. H. J. Polymath, A new proof of the density Hales-Jewett theorem, Ann. Math. 175 (2012), 1283–1327.

    Article  MathSciNet  MATH  Google Scholar 

  101. D. Preiss and V. Rödl, Note on decomposition of spheres with Hilbert spaces, J. Comb. Th. A 43 (1) (1986),38–44.

    Article  MATH  Google Scholar 

  102. R. Rado, Studien zur Kombinatorik, Math. Zeitschrift 36 (1933), 242–280.

    Article  MathSciNet  Google Scholar 

  103. R. Rado, Note on canonical partitions, Bull. London Math. Soc. 18 (1986), 123–126. Reprinted: Mathematics of Ramsey Theory (ed. J. Nešetřil and V. Rödl), Springer 1990, pp. 29–32.

    Google Scholar 

  104. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 48 (1930), 264–286.

    Article  MathSciNet  Google Scholar 

  105. V. Rödl, Some developments in Ramsey theory, in ICM 1990 Kyoto, 1455–1466.

    Google Scholar 

  106. V. Rödl, On homogeneous sets of positive integers, J. Comb, Th. (A) 102 (2003), 229–240.

    Google Scholar 

  107. V. Rödl and A. Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), 917–942.

    Article  MathSciNet  MATH  Google Scholar 

  108. V. Rödl, J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures and Algor. 25 (2004), 1–42.

    Article  MATH  Google Scholar 

  109. K. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.

    Article  MathSciNet  MATH  Google Scholar 

  110. R. Salem and D. C. Spencer, On sets of integers which contain no three terms in arithmetic progression, Proc. Nat. Acad. Sci. 28 (1942), 561–563.

    Article  MathSciNet  MATH  Google Scholar 

  111. A. Sárkőzy, On difference sets of integers I, Acta Math. Sci. Hungar. 31 (1978), 125–149.

    Article  Google Scholar 

  112. S. Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amer. Math. Soc. 1 (1988), 683–697.

    Article  MathSciNet  MATH  Google Scholar 

  113. S. Shelah, Finite canonization, Comment.Math.Univ.Carolinae 37,3 (1996) 445–456.

    MATH  Google Scholar 

  114. I. Schur, Über die Kongruens \({x}^{m} + {y}^{m} = {z}^{m}(\ \mathrm{mod}\ p)\), Jber. Deutch. Math. Verein. 25 (1916), 114–117.

    MATH  Google Scholar 

  115. I. Schur, Gesammelte Abhandlungen (eds. A. Brauer, H. Rohrbach), 1973, Springer.

    Google Scholar 

  116. S. Sidon, Ein Satz über trigonometrische Polynome und seine Anwendungen in der Theorie der Fourier-Reihen, Math. Ann. 106 (1932), 539.

    Article  MathSciNet  Google Scholar 

  117. J. H. Spencer, Ramsey’s theorem — a new lower bound, J. Comb. Th. A, 18 (1975), 108–115.

    Article  MATH  Google Scholar 

  118. J. H. Spencer, Three hundred million points suffice, J. Comb. Th. A 49 (1988), 210–217.

    Article  MATH  Google Scholar 

  119. T. Tao, The ergodic and combinatorial approaches to Szemerédi’s theorem, In: CRM Roceedings & Lecture Notes 43, AMS (2007), 145–193.

    Google Scholar 

  120. T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006, xviii+512

    Google Scholar 

  121. A. Thomason, An upper bound for some Ramsey numbers, J. Graph Theory 12 (1988), 509–517.

    Article  MathSciNet  MATH  Google Scholar 

  122. A. Thomason, Random graphs, strongly regular graphs and pseudorandom graphs, In: Survey in Combinatorics, Cambridge Univ. Press (1987), 173–196.

    Google Scholar 

  123. P. Valtr, Convex independent sets and 7-holes in restricted planar point sets, Disc. Comput. Geom. 7 (1992), 135–152.

    Article  MathSciNet  MATH  Google Scholar 

  124. B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212–216.

    MATH  Google Scholar 

  125. B. L. van der Waerden, How the proof of Baudet’s Conjecture was found, in Studies in Pure Mathematics (ed. L. Mirsky), Academic Press, New York, 1971, pp. 251–260.

    Google Scholar 

  126. A. A. Zykov, On some properties of linear complexes, Math. Sbornik 66, 24 (1949), 163–188.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author was supported by ERC CZ LL1201 Cores and CE ITI P202/12/G061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron L. Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Graham, R.L., Nešetřil, J. (2013). Ramsey Theory in the Work of Paul Erdős. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős II. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7254-4_13

Download citation

Publish with us

Policies and ethics