Modelling Electricity Day-Ahead Prices by Multivariate Lévy Semistationary Processes

  • Almut E. D. VeraartEmail author
  • Luitgard A. M. Veraart


This paper presents a new modelling framework for day-ahead electricity prices based on multivariate Lévy semistationary (\(\mathcal{M}\mathcal{L}\mathcal{S}\mathcal{S}\)) processes. Day-ahead prices specify the prices for electricity delivered over certain time windows on the next day and are determined in a daily auction. Since there are several delivery periods per day, we use a multivariate model to describe the different day-ahead prices for the different delivery periods on the next day. We extend the work by [4] on univariate Lévy semistationary processes to a multivariate setting and discuss the probabilistic properties of the new class of stochastic processes. Furthermore, we provide a detailed empirical study using data from the European energy exchange (EEX) and give new insights into the intra-daily correlation structure of electricity day-ahead prices in the EEX market. The flexible structure of \(\mathcal{M}\mathcal{L}\mathcal{S}\mathcal{S}\) processes is able to reproduce the stylized facts of such data rather well. Furthermore, these processes can be used to model negative prices in electricity markets which started to occur recently and cannot be described by many classical models.


Electricity Price Stochastic Volatility Spot Price Spot Prex Negative Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support by the Center for Research in Econometric Analysis of Time Series, CREATES, funded by the Danish National Research Foundation is gratefully acknowledged by A. E. D. Veraart.


  1. 1.
    Andersson, J. and J. Lillestøl: Multivariate modelling and prediction of hourly one–day ahead prices at Nordpool. Energy, Natural Resources and Environmental Economics, 133–154 (2010).Google Scholar
  2. 2.
    Barlow, M. T.: A diffusion model for electricity prices. Mathematical Finance 12(4), 287–298 (2002).CrossRefGoogle Scholar
  3. 3.
    Barndorff-Nielsen, O. E. and A. Basse-O’Connor: Quasi Ornstein-Uhlenbeck Processes. Bernoulli 17(3), 916–941 (2011).Google Scholar
  4. 4.
    Barndorff-Nielsen, O. E., F. E. Benth, and A. E. D. Veraart: Modelling energy spot prices by volatility modulated Lévy-driven volterra processes. Bernoulli. To appear (2013).Google Scholar
  5. 5.
    Barndorff-Nielsen, O. E. and J. Schmiegel: Brownian semistationary processes and volatility/intermittency. In H. Albrecher, W. Rungaldier, and W. Schachermeyer (Eds.), Advanced Financial Modelling, Radon Series on Computational and Applied Mathematics 8, Berlin, pp. 1–26. W. de Gruyter (2009).Google Scholar
  6. 6.
    Basse-O’Connor, A., S.-E. Graversen, and J. Pedersen: Stochastic integration on the real line. Theory of Probability and Its Applications (2013). To appear.Google Scholar
  7. 7.
    Benth, F., J. Kallsen, and T. Meyer-Brandis: A non-Gaussian Ornstein-Uhlenbeck process for electricity spot price modelling and derivatives pricing. Applied Mathematical Finance 14(2), 153–169 (2007).CrossRefGoogle Scholar
  8. 8.
    Benth, F. and S. Koekebakker: Stochastic modeling of financial electricity contracts. Energy Economics 30, 1116–1157 (2008).CrossRefGoogle Scholar
  9. 9.
    Benth, F., J. Šaltytė Benth, and S. Koekebakker: Stochastic Modelling of Electricity and Related Markets, Volume 11 of Advanced Series on Statistical Science and Applied Probability. World Scientific (2008).Google Scholar
  10. 10.
    Benth, F. E., C. Klüppelberg, G. Müller, and L. Vos: Futures pricing in electricity markets based on stable CARMA spot models. Preprint available from ArXiv (arXiv:1201.1151) (2012).Google Scholar
  11. 11.
    Bessembinder, H. and M. L. Lemmon: Equilibrium pricing and optimal hedging in electricity forward markets. The Journal of Finance 57, 1347–1382 (2002).CrossRefGoogle Scholar
  12. 12.
    Breymann, W. and D. Lüthi: ghyp: A package on generalized hyperbolic distributions. Manual for the R package ghyp (2010).Google Scholar
  13. 13.
    Brockwell, P.: Continuous-time ARMA processes. In D. Shanbhag and C. Rao (Eds.), Handbook of Statistics, Volume 19 of Stochastic Processes: Theory and Methods, pp. 249–275. Amsterdam: Elsevier (2001).Google Scholar
  14. 14.
    Brockwell, P.: Lévy-driven CARMA processes. Annals of the Institute of Statistical Mathematics 53, 113–124 (2001).CrossRefGoogle Scholar
  15. 15.
    Brockwell, P. J.: Lévy-driven continuous-time ARMA processes. In T. Mikosch, J.-P. Kreiß, R. A. Davis, and T. G. Andersen (Eds.), Handbook of financial time series, pp. 457–480. Springer, Berlin (2009).CrossRefGoogle Scholar
  16. 16.
    Brockwell, P. J., R. A. Davis, and Y. Yang: Estimation for non-negative Lévy-driven CARMA processes. Journal of Business and Economic Statistics 29, 250–259 (2011).CrossRefGoogle Scholar
  17. 17.
    Brockwell, P. J. and E. Schlemm: Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations. Journal of Multivariate Analysis 115, 217–251 (2013).CrossRefGoogle Scholar
  18. 18.
    Čížek, P., W. Härdle, and R. Weron (Eds.): Statistical tools for finance and insurance. Berlin: Springer-Verlag (2011).Google Scholar
  19. 19.
    Cleveland, W. S.: Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368), 829–836 (1979).CrossRefGoogle Scholar
  20. 20.
    Davis, R. A. and W. P. McCormick: Estimation for first-order autoregressive processes with positive or bounded innovations. Stochastic Processes and their Applications 31(2), 237–250 (1989).CrossRefGoogle Scholar
  21. 21.
    Deelstra, G. and A. Petkovic: How they can jump together: Multivariate Lévy processes and option pricing. Belgian Actuarial Bulletin 9(1), 29–42 (2010).Google Scholar
  22. 22.
    Fajardo, J. and A. Farias: Multivariate affine generalized hyperbolic distributions: An empirical investigation. International Review of Financial Analysis 18(4), 174–184 (2009).CrossRefGoogle Scholar
  23. 23.
    Gallant, A. R.: An Introduction to Econometric Theory: Measure-Theoretic Probability and Statistics with Applications to Economics. Princeton University Press (1997).Google Scholar
  24. 24.
    Garcia, I., C. Klüppelberg, and G. Müller: Estimation of stable CARMA models with an application to electricity spot prices. Statistical Modelling 11(5), 447–470 (2011).CrossRefGoogle Scholar
  25. 25.
    Guthrie, G. and S. Videbeck: High frequency electricity spot price dynamics: An intra-day markets approach. New Zealand Institute for the Study of Competition and Regulation, Tech. Rep. (2002).Google Scholar
  26. 26.
    Guthrie, G. and S. Videbeck: Electricity spot price dynamics: Beyond financial models. Energy Policy 35(11), 5614–5621 (2007).CrossRefGoogle Scholar
  27. 27.
    Haldrup, N. and M. Ø. Nielsen: A regime switching long memory model for electricity prices. Journal of Econometrics 135(1–2), 349–376 (2006).CrossRefGoogle Scholar
  28. 28.
    Huisman, R., C. Huurman, and R. Mahieu: Hourly electricity prices in day-ahead markets. Energy Economics 29(2), 240–248 (2007).CrossRefGoogle Scholar
  29. 29.
    Karatzas, I. and S. Shreve: Brownian Motion and Stochastic Calculus (2nd ed.), Volume 113 of Graduate Texts in Mathematics (2005). Springer. Corr. 8th printing.Google Scholar
  30. 30.
    Klüppelberg, C., T. Meyer-Brandis, and A. Schmidt: Electricity spot price modelling with a view towards extreme spike risk. Quantitative Finance 10, 963–974 (2010).CrossRefGoogle Scholar
  31. 31.
    Knittel, C. and M. Roberts: (2001). An empirical examination of deregulated electricity prices. POWER.Google Scholar
  32. 32.
    Koopman, S. J., M. Ooms, and M. A. Carnero: Periodic seasonal Reg-ARFIMA-GARCH models for daily electricity prices. Journal of the American Statistical Association 102(477) (2007).Google Scholar
  33. 33.
    Marquardt, T:. Multivariate fractionally integrated CARMA processes. Journal of Multivariate Analysis 98(9), 1705–1725 (2007).CrossRefGoogle Scholar
  34. 34.
    Marquardt, T. and R. Stelzer: Multivariate CARMA processes. Stochastic Processes and their Applications 117, 96–120 (2007).CrossRefGoogle Scholar
  35. 35.
    McNeil, A. J., R. Frey, and P. Embrechts: Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton, USA: Princeton University Press (2010).Google Scholar
  36. 36.
    Schmidt, R., T. Hrycej, and E. Stützle: Multivariate distribution models with generalized hyperbolic margins. Computational statistics and data analysis 50, 2065–2096 (2006).CrossRefGoogle Scholar
  37. 37.
    Schneider, S.: Power spot price models with negative prices. MPRA Paper No. 29958, online at
  38. 38.
    Schwartz, E.: The stochastic behavior of commodity prices: Implications for valuation and hedging. The Journal of Finance 52(3) 923–973 (1997).CrossRefGoogle Scholar
  39. 39.
    Sewalt, M. and C. De Jong: Negative prices in electricity markets. Commodities Now, 74–77 (2003).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Almut E. D. Veraart
    • 1
    Email author
  • Luitgard A. M. Veraart
    • 2
  1. 1.Department of MathematicsImperial College London and CREATESLondonUK
  2. 2.Department of MathematicsLondon School of Economics and Political ScienceLondonUK

Personalised recommendations