Skip to main content

A Novel Image-Based Approach for Early Detection of Prostate Cancer Using DCE-MRI

  • Chapter
  • First Online:
Computational Intelligence in Biomedical Imaging

Abstract

A novel noninvasive approach for early diagnosis of prostate cancer from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is proposed. The proposed approach consists of four main steps. The first step is to isolate the prostate from the surrounding anatomical structures based on a maximum a posteriori (MAP) estimate of a log-likelihood function that accounts for the shape priori, the spatial interaction, and the current appearance of the prostate tissues and its background (surrounding anatomical structures). In the second step, a nonrigid registration algorithm is employed to account for any local deformation that could occur in the prostate during the scanning process due to patient breathing and local motion. In the third step, the perfusion curves that show propagation of the contrast agent into the tissue are obtained from the segmented prostate of the whole image sequence of the patient. In the final step, we collect two features from these curves and use a k-nearest neighbor (KNN) classifier to distinguish between malignant and benign detected tumors. Moreover, in this chapter we introduce a new approach to generate color maps that illustrate the propagation of the contrast agent in the prostate tissues based on the analysis of the 3D spatial interaction of the change of the gray-level values of prostate voxel using a generalized Gauss–Markov random field (GGMRF) image model. Finally, the tumor boundaries are determined using a level set deformable model controlled by the perfusion information and the spatial interactions between the prostate voxels. Experimental results on 30 clinical DCE-MRI data sets yield promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics 2010. CA Cancer J Clin 60:277–300

    Article  Google Scholar 

  2. Crawford ED (2003) Epidemiology of prostate cancer. Urology 62(6 Suppl 1):3–12

    Article  Google Scholar 

  3. Lin K, Lipsitz R, Miller T, Janakiraman S, Force UPST (2008) Benefits and harms of prostate-specific antigen screening for prostate cancer: an evidence update for the U.S. preventive services task force. Ann Intern Med 149(3):192–199

    Article  Google Scholar 

  4. Schroder FH (2010) Prostate cancer around the world. An overview. Urol Oncol 28(6):663–667

    Article  Google Scholar 

  5. Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, Lodding P, Pihl C, Stranne J, Holmberg E, Lilja H (2010) Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 11(8):725–732

    Article  Google Scholar 

  6. Shen D, Zhan Y, Davatzikos C (2003) Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Trans Med Imaging 22(4):539–551

    Article  Google Scholar 

  7. Ladak HM, Mao F, Wang Y, Downey DB, Steinman DA, Fenster A (2000) Prostate boundary segmentation from 2D ultrasound images. Med Phys 27:1777–1788

    Article  Google Scholar 

  8. Zhan Y, Shen D (2003) Automated segmentation of 3D US prostate images using statistical texture-based matching method. In: Medical image computing and computer-assisted intervention (MICCAI), vol 2878, Montreal, 16–18 Nov 2003, pp 688–696

    Google Scholar 

  9. Gong L, Pathak SD, Haynor DR, Cho PS, Kim Y (2004) A parametric shape modeling using deformable super ellipses for prostate segmentation. IEEE Trans Med Imaging 23:340–349

    Article  Google Scholar 

  10. Zwiggelaar R, Zhu Y, Williams S (2003) Semi-automatic segmentation of the prostate. In: Proceedings of first Iberian Conference on Pattern Recognition and Image (ibPRIA'03), Puerto de Andratx, Mallorca, Spain, 4–6 June 2003, pp 1108–1116

    Google Scholar 

  11. Trkbey B, Thomasson D, Pang Y, Bernardo M, Choyke P (2010) The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Turk Soc Radiol 16:186–192

    Google Scholar 

  12. Zhu Y, Williams S, Zwiggelaar R (2004) Segmentation of volumetric prostate MRI data using hybrid 2D+3D shape modeling. In: Proceeding Medical Image Understanding and Analysis, London, UK, pp 61–64

    Google Scholar 

  13. Toth R, Tiwari P, Rosen M, Kalyanpur A, Pungavkar S, Madabhushi A (2008) A multimodal prostate segmentation scheme by combining spectral clustering and active shape models. In: Proceedings of SPIE Medical Imaging: Image Processing, vol 6914, San Diego, CA, 16 February 2008

    Google Scholar 

  14. Klein S, van der Heidi UA, Raaymakers BW, Kotte A, Staring M, Pluim J (2007) Segmentation of the prostate in MRI images by atlas matching. In: Proceedings of IEEE international symposium on biomedical imaging: From nano to macro, Washington, DC, USA, 12–16 April 2007, pp 1300–1303

    Google Scholar 

  15. Vikal S, Haker S, Tempany C, Fichtinger G (2009) Prostate contouring in MRI guided biopsy. In: Proceedings of SPIE Medical Imaging: Image Processing, vol 7259, Lake Buena Vista, FL, USA, February 2009, pp 1–11

    Google Scholar 

  16. Martin S, Daanenc V, Troccaz J (2010) Automated segmentation of the prostate in 3D MRI images using a probabilistic atlas and a spatially constrained deformable model. Med Phys 37:1579–1590

    Article  Google Scholar 

  17. Thompson I, Thrasher JB, Aus G, Burnett AL, Canby-Hagino ED, Cookson MS, D'Amico AV, Dmochowski RR, Eton DT, Forman JD, Goldenberg SL, Hernandez J, Higano CS, Kraus SR, Moul JW, Tangen CM (2007) AUA Prostate Cancer Clinical Guideline Update Panel Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol 177:2106–2131

    Google Scholar 

  18. Roehl K, Antenor J, Catalona W (2002) Serial biopsy results in prostate cancer screening study. J Am Urol Assoc 167:2435–2439

    Google Scholar 

  19. Keetch D, Catalona W, Smith D (1994) Serial prostatic biopsies in men with persistently elevated serum prostate specific antigen values. J Am Urol Assoc 151:1571–1574

    Google Scholar 

  20. Chan I, Wells W, Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany CMC (2003) Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med Phys 30(9):2390–2398

    Article  Google Scholar 

  21. Madabhushi A, Feldman M, Metaxas D, Tomaszeweski J, Chute D (2005) Automated detection of prostatic adenocarcinoma from high-resolution ex-vivo MRI. IEEE Trans Med Imaging 24(12):1611–1625

    Article  Google Scholar 

  22. Ocak I, Bernardo M, Metzger G, Barrett T, Pinto P, Albert PS, Choyke PL (2007) Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am J Roentgenol 189:849–853

    Article  Google Scholar 

  23. Fütterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, Vos P, Hulsbergen Van de Kaa CA, Witjes JA, Krabbe PF, Heerschap A, Barentsz JO (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458

    Google Scholar 

  24. Rouvière O, Valette O, Grivolat S, Colin-Pangaud C, Bouvier R, Chapelon J, Gelet A, Lyonnet D (2004) Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor correlation with biopsy findings. Urology 63:922–927

    Article  Google Scholar 

  25. Kim J, Hong S, Choi Y et al (2005) Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging 22:639–646

    Article  Google Scholar 

  26. Puech P, Betrouni N, Makni N, Dewalle AS, Villers A, Lemaitre L (2009) Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results. Int J Comput Assist Radiol Surg 4:1–10

    Article  Google Scholar 

  27. Engelbrecht M, Huisman H, Laheij R et al (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229:248–254

    Article  Google Scholar 

  28. Vos PC, Hambrock T, Hulsbergen-van de Kaa CA, Futterer JJ, Barentsz JO, Huisman HJ (2008) Computerized analysis of prostate lesions in the peripheral zone using dynamic contrast enhanced MRI. Med Phys 35:888–899

    Article  Google Scholar 

  29. Viswanath S, Bloch BN, Genega E, Rofsky N, Lenkinski R, Chappelow J, Toth R, Madabhushi A (2008) A comprehensive segmentation, registration, and cancer detection scheme on 3 tesla in vivo prostate DCE-MRI. In: Proceedings of International Conference on Image Computing and Computer Assisted Intervention (MICCAI'08), New York, NY, USA, September 6–10, 2008, pp 662–671

    Google Scholar 

  30. Reinsberg SA, Payne GS, Riches SF, Ashley S, Brewster JM, Morgan VA, deSouza NM (2007) Combined use of diffusion-weighted MRI and 1h MR spectroscopy to increase accuracy in prostate cancer detection. Am J Roentgenol 188:91–98

    Article  Google Scholar 

  31. Gímel’farb G (1999) Image textures and Gibbs random fields. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  32. El-Baz A, Gimel’farb G (2007) EM based approximation of empirical distributions with linear combinations of discrete Gaussians. In: Proceedings of IEEE international conference on image processing, vol 4. San Antonio, 16–19 Sept 2007, pp 373–376

    Google Scholar 

  33. El-Baz A, Elnakib A, Khalifa F, Abou El-Ghar M, McClure P, Soliman A, Gimel’farb GL (2012) Precise segmentation of 3-D magnetic resonance angiography. IEEE Trans Biomed Eng 59(7):2019–2029

    Article  Google Scholar 

  34. Farag A, El-Baz A, Gimelfarb G (2006) Precise segmentation of multimodal images. IEEE Trans Image Process 15(4):952–968

    Article  Google Scholar 

  35. Viola P, Wells WM III (1995) Alignment by maximization of mutual information. Int J Comput Vis 24:137–154

    Google Scholar 

  36. Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc B 48(3):259–302

    MathSciNet  MATH  Google Scholar 

  37. Studholme C, Constable RT, Duncan J (2000) Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model. IEEE Trans Med Imaging 19(11):1115–1127

    Article  Google Scholar 

  38. Avants BB, Gee JC (2004) Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage 23(1):139–150

    Article  Google Scholar 

  39. Bouman CA, Sauer K (1993) A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans Image Process 2(3):296–310

    Article  Google Scholar 

  40. Khalifa F, Beache GM, Gimel’farb G, Giridharan GA, El-Baz A (2012) Accurate automatic analysis of cardiac cine images. IEEE Trans Biomed Eng 59(2):445–455

    Article  Google Scholar 

  41. Dice R (1945) Measures of the amount of ecologic association between species. Ecol Soc Am 26(3):297–302

    Google Scholar 

  42. Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson E, Willsky A (2003) A shape-based approach to curve evolution for segmentation of medical imagery. IEEE Trans Med Imaging 22(2):137–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman El-Baz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Firjani, A. et al. (2014). A Novel Image-Based Approach for Early Detection of Prostate Cancer Using DCE-MRI. In: Suzuki, K. (eds) Computational Intelligence in Biomedical Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7245-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7245-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7244-5

  • Online ISBN: 978-1-4614-7245-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics