Skip to main content

Brain Disease Classification and Progression Using Machine Learning Techniques

  • Chapter
  • First Online:
Computational Intelligence in Biomedical Imaging

Abstract

In the past two decades, many machine learning techniques have been applied to the detection of neurologic or neuropsychiatric disorders such as Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI), based on different modalities of biomarkers including structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF), etc. This chapter presents some latest developments in application of machine learning tools to AD and MCI diagnosis and progression. We divide our discussions into two parts, pattern classification and pattern regression. We will discuss how the cortical morphological change patterns and the ensemble sparse classifiers can be used for pattern classification and then discuss how the multi-modal multi-task learning (M3T) and the semi-supervised multi-modal relevance vector regression can be applied to pattern regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.miketipping.com/index.php?page=rvm

References

  1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  Google Scholar 

  2. Johnson SC, Schmitz TW, Moritz CH, Meyerand ME, Rowley HA, Alexander AL, Hansen KW, Gleason CE, Carlsson CM, Ries ML, Asthana S, Chen K, Reiman EM, Alexander GE (2006) Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging 27:1604–1612

    Article  Google Scholar 

  3. Thompson PM, Apostolova LG (2007) Computational anatomical methods as applied to ageing and dementia. Br J Radiol 80:S78–S91

    Article  Google Scholar 

  4. Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2007) 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130:1777–1786

    Article  Google Scholar 

  5. Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA (2004) Mild cognitive impairment can be distinguished from Alzheimer’s disease and normal aging for clinical trials. Arch Neurol 61:59–66

    Article  Google Scholar 

  6. Bischkopf J, Busse A, Angermeyer MC (2002) Mild cognitive impairment - a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr Scand 106:403–414

    Article  Google Scholar 

  7. de Leon MJ, Mosconi L, Li J, De Santi S, Yao Y, Tsui WH, Pirraglia E, Rich K, Javier E, Brys M, Glodzik L, Switalski R, Saint Louis LA, Pratico D (2007) Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. J Neurol 254:1666–1675

    Article  Google Scholar 

  8. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2010) CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. Neurobiol Dis 30:2088–2101

    Google Scholar 

  9. Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, Weiner MW (2007) Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130:1159–1166

    Article  Google Scholar 

  10. McEvoy LK, Fennema-Notestine C, Roddey JC, Hagler DJ Jr, Holland D, Karow DS, Pung CJ, Brewer JB, Dale AM (2009) Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 251:195–205

    Article  Google Scholar 

  11. De Santi S, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, Tsui WH, Kandil E, Boppana M, Daisley K, Wang GJ, Schlyer D, Fowler J (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22:529–539

    Article  Google Scholar 

  12. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405

    Article  Google Scholar 

  13. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM, Trojanowski JQ (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413

    Article  Google Scholar 

  14. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, Rich K, Kaiser E, Verbeek M, Tsolaki M, Mulugeta E, Rosen E, Aarsland D, Visser PJ, Schroder J, Marcusson J, de Leon M, Hampel H, Scheltens P, Pirttila T, Wallin A, Jonhagen ME, Minthon L, Winblad B, Blennow K (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393

    Article  Google Scholar 

  15. Bouwman FH, van der Flier WM, Schoonenboom NS, van Elk EJ, Kok A, Rijmen F, Blankenstein MA, Scheltens P (2007) Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology 69:1006–1011

    Article  Google Scholar 

  16. Westman E, Simmons A, Zhang Y, Muehlboeck J-S, Tunnard C, Liu Y, Collins L, Evans A, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, Soininen H, Lovestone S, Spenger C, Wahlund L-O (2010) AddNeuroMed consortium: multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. Neuroimage 54:1178–1187

    Article  Google Scholar 

  17. Fan Y, Batmanghelich N, Clark CM, Davatzikos C (2008) The Alzheimer’s disease neuroimaging initiative: spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39:1731–1743

    Article  Google Scholar 

  18. Lao Z, Shen D, Xue Z, Karacali B, Resnick SM, Davatzikos C (2004) Morphological classification of brains via high-dimensional shape transformations and machine learning methods. Neuroimage 21:46–57

    Article  Google Scholar 

  19. Chetelat G, Baron JC (2003) Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 18:525–541

    Article  Google Scholar 

  20. Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Kokmen E (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51:993–999

    Article  Google Scholar 

  21. Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, van Erp TG, Cannon TD, Toga AW (2004) Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. Neurobiol Dis 23:S2–S18

    Google Scholar 

  22. Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, Grodstein F, Wright CI, Blacker D, Rosas HD, Sperling RA, Atri A, Growdon JH, Hyman BT, Morris JC, Fischl B, Buckner RL (2009) The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 19:497–510

    Article  Google Scholar 

  23. Thompson PM, Mega MS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, Moussai J, Holmes CJ, Cummings JL, Toga AW (2001) Cortical changes in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex 11:1–16

    Article  Google Scholar 

  24. Chupin M, Gerardin E, Cuingnet R, Boutet C, Lemieux L, Lehericy S, Benali H, Garnero L, Colliot O (2009) Alzheimer’s disease neuroimaging initiative: fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19:579–587

    Article  Google Scholar 

  25. Colliot O, Chetelat G, Chupin M, Desgranges B, Magnin B, Benali H, Dubois B, Garnero L, Eustache F, Lehericy S (2008) Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248:194–201

    Article  Google Scholar 

  26. Diehl J, Grimmer T, Drzezga A, Riemenschneider M, Forstla H, Kurz A (2004) Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 25:1051–1056

    Article  Google Scholar 

  27. Wang Y, Fan Y, Bhatt P, Davatzikos C (2010) High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. Neuroimage 50:1519–1535

    Article  Google Scholar 

  28. Duchesne S, Caroli A, Geroldi C, Frisoni G, Collins D (2005) Predicting clinical variable from MRI features: application to MMSE in MCI. Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005) Lecture notes in computer science, Volume 3749: 392–399

    Google Scholar 

  29. Duchesne S, Caroli A, Geroldi C, Collins DL, Frisoni GB (2009) Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage 47:1363–1370

    Article  Google Scholar 

  30. Stonnington CM, Chu C, Kloppel S, Jack CR Jr, Ashburner J, Frackowiak RS (2010) Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. Neuroimage 51:1405–1413

    Article  Google Scholar 

  31. Fan Y, Kaufer D, Shen D (2010) Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. In Proceedings of 2010 IEEE international symposium on biomedical imaging: from nano to macro (ISBI 2010), 852–855

    Google Scholar 

  32. Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ (2011) Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging 32:2322.e19–27

    Google Scholar 

  33. Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM (2008) Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol Aging 29:514–523

    Article  Google Scholar 

  34. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack JCR (2009) On behalf of the Alzheimer’s disease neuroimaging initiative: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 73:294–301

    Article  Google Scholar 

  35. Kloppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR Jr, Ashburner J, Frackowiak RSJ (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131:681–689

    Article  Google Scholar 

  36. Fan Y, Gur RE, Gur RC, Wu X, Shen D, Calkins ME, Davatzikos C (2008) Unaffected family members and Schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study. Biol Psychiatry 63:118–124

    Article  Google Scholar 

  37. Fan Y, Resnick SM, Wu X, Davatzikos C (2008) Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. Neuroimage 41:277–285

    Article  Google Scholar 

  38. Vemuri P, Gunter JL, Senjem ML, Whitwell JL, Kantarci K, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2008) Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39:1186–1197

    Article  Google Scholar 

  39. Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C (2007) COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans Med Imaging 26:93–105

    Article  Google Scholar 

  40. Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41:1220–1227

    Article  Google Scholar 

  41. Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011) The Alzheimer’s Disease Neuroimaging Initiative: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55:856–867

    Article  Google Scholar 

  42. Magnin B, Mesrob L, Kinkingnehun S, Pelegrini-Issac M, Colliot O, Sarazin M, Dubois B, Lehericy S, Benali H (2009) Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51:73–83

    Article  Google Scholar 

  43. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227

    Article  Google Scholar 

  44. Majumdar A, Ward RK (2009) Fast group sparse classification. Can J Electr Comput Eng 34:136–144

    Article  Google Scholar 

  45. Huang K, Aviyente S (2007) Sparse representation for signal classification. Adv Neural Inf Process Syst 19:609–612

    Google Scholar 

  46. Chu C, Kloppel SS, Draganski CSB, Jack C Jr, Ashburner J, Frackowiak RSJ (2007) Regression analysis for clinical scores of Alzheimer’s disease using multivariate machine learning method. Hum Brain Mapp Poster, Chicago, IL, USA

    Google Scholar 

  47. Fan Y, Kaufer D, Shen D (2009) Estimating clinical variables from brain images using Bayesian regression. Alzheimer & Dementia 5:372

    Google Scholar 

  48. Franke K, Ziegler G, Kloppel S, Gaser C (2010) Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50:883–892

    Article  Google Scholar 

  49. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  Google Scholar 

  50. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  Google Scholar 

  51. Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatr 141:1356–1364

    Google Scholar 

  52. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    Article  Google Scholar 

  53. He Y, Chen ZJ, Evans AC (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. Neurobiol Dis 28:4756–4766

    Google Scholar 

  54. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    Article  Google Scholar 

  55. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3:185–205

    Article  Google Scholar 

  56. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1285

    Article  Google Scholar 

  57. Guyon I, Weston J, Barnhill S, Vapnik V (2004) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  58. Rakotomamonjy A (2003) Variable selection using SVM based criteria. J Mach Learn Res 3:1357–1370

    MathSciNet  MATH  Google Scholar 

  59. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15:3736–3745

    Article  MathSciNet  Google Scholar 

  60. Fadili M, Starck JL, Murtagh F (2009) Inpainting and zooming using sparse representations. Comput J 52:64–79

    Article  Google Scholar 

  61. Hazan T, Polak S, Shashua A (2005) Sparse image coding using a 3D non-negative tensor factorization. In Proceedings of the Tenth IEEE international conference on computer vision (ICCV 2005), Volume 1:50–57

    Google Scholar 

  62. Liu M, Zhang D, Shen D (2012) Ensemble sparse classification of Alzheimer’s disease. Neuroimage 60:1106–1116

    Article  Google Scholar 

  63. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  Google Scholar 

  64. Shen D, Davatzikos C (2003) Very high resolution morphometry using mass-preserving deformations and HAMMER elastic registration. Neuroimage 18:28–41

    Article  Google Scholar 

  65. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43:129–159

    Article  MathSciNet  MATH  Google Scholar 

  66. Candes E, Romberg J (2005) l1-magic: recovery of sparse signals via convex programming. http://www.acm.caltech.edu/l1magic/downloads/l1magic.pdf

  67. Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  68. Kim SJ, Koh K, Lustig M, Boyd S, Gorinevsky D (2007) An interior-point method for large-scale l1-regularized least squares. IEEE J Sel Top Signal Process 1:606–617

    Article  Google Scholar 

  69. Zhang D, Shen D (2012) Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59:895–907

    Article  Google Scholar 

  70. Obozinski G, Taskar B, Jordan MI (2006) Multi-task feature selection. Statistics Department, UC, Berkeley

    Google Scholar 

  71. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58:267–288

    MathSciNet  MATH  Google Scholar 

  72. Liu J, Ji S, Ye J (2009) SLEP: sparse learning with efficient projections. Arizona State University. http://www.public.asu.edu/~jye02/Software/SLEP

  73. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    MathSciNet  MATH  Google Scholar 

  74. Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, L Whitwell J, Ward C, Dale AM, Felmlee JP, Gunter JL, Hill DL, Killiany R, Schuff N, Fox-Bosetti S, Lin C, Studholme C, DeCarli CS, Krueger G, Ward HA, Metzger GJ, Scott KT, Mallozzi R, Blezek D, Levy J, Debbins JP, Fleisher AS, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner MW (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691

    Article  Google Scholar 

  75. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  76. Wee CY, Yap PT, Shen D (2013) The Alzheimer’s disease neuroimaging initiative: prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Hum Brain Mapp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cheng, B., Wee, CY., Liu, M., Zhang, D., Shen, D. (2014). Brain Disease Classification and Progression Using Machine Learning Techniques. In: Suzuki, K. (eds) Computational Intelligence in Biomedical Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7245-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7245-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7244-5

  • Online ISBN: 978-1-4614-7245-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics