Abstract
In the past two decades, many machine learning techniques have been applied to the detection of neurologic or neuropsychiatric disorders such as Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI), based on different modalities of biomarkers including structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF), etc. This chapter presents some latest developments in application of machine learning tools to AD and MCI diagnosis and progression. We divide our discussions into two parts, pattern classification and pattern regression. We will discuss how the cortical morphological change patterns and the ensemble sparse classifiers can be used for pattern classification and then discuss how the multi-modal multi-task learning (M3T) and the semi-supervised multi-modal relevance vector regression can be applied to pattern regression.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191
Johnson SC, Schmitz TW, Moritz CH, Meyerand ME, Rowley HA, Alexander AL, Hansen KW, Gleason CE, Carlsson CM, Ries ML, Asthana S, Chen K, Reiman EM, Alexander GE (2006) Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging 27:1604–1612
Thompson PM, Apostolova LG (2007) Computational anatomical methods as applied to ageing and dementia. Br J Radiol 80:S78–S91
Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2007) 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130:1777–1786
Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA (2004) Mild cognitive impairment can be distinguished from Alzheimer’s disease and normal aging for clinical trials. Arch Neurol 61:59–66
Bischkopf J, Busse A, Angermeyer MC (2002) Mild cognitive impairment - a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr Scand 106:403–414
de Leon MJ, Mosconi L, Li J, De Santi S, Yao Y, Tsui WH, Pirraglia E, Rich K, Javier E, Brys M, Glodzik L, Switalski R, Saint Louis LA, Pratico D (2007) Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. J Neurol 254:1666–1675
Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2010) CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. Neurobiol Dis 30:2088–2101
Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, Weiner MW (2007) Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130:1159–1166
McEvoy LK, Fennema-Notestine C, Roddey JC, Hagler DJ Jr, Holland D, Karow DS, Pung CJ, Brewer JB, Dale AM (2009) Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 251:195–205
De Santi S, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, Tsui WH, Kandil E, Boppana M, Daisley K, Wang GJ, Schlyer D, Fowler J (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22:529–539
Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405
Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM, Trojanowski JQ (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413
Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, Rich K, Kaiser E, Verbeek M, Tsolaki M, Mulugeta E, Rosen E, Aarsland D, Visser PJ, Schroder J, Marcusson J, de Leon M, Hampel H, Scheltens P, Pirttila T, Wallin A, Jonhagen ME, Minthon L, Winblad B, Blennow K (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393
Bouwman FH, van der Flier WM, Schoonenboom NS, van Elk EJ, Kok A, Rijmen F, Blankenstein MA, Scheltens P (2007) Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology 69:1006–1011
Westman E, Simmons A, Zhang Y, Muehlboeck J-S, Tunnard C, Liu Y, Collins L, Evans A, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, Soininen H, Lovestone S, Spenger C, Wahlund L-O (2010) AddNeuroMed consortium: multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. Neuroimage 54:1178–1187
Fan Y, Batmanghelich N, Clark CM, Davatzikos C (2008) The Alzheimer’s disease neuroimaging initiative: spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39:1731–1743
Lao Z, Shen D, Xue Z, Karacali B, Resnick SM, Davatzikos C (2004) Morphological classification of brains via high-dimensional shape transformations and machine learning methods. Neuroimage 21:46–57
Chetelat G, Baron JC (2003) Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 18:525–541
Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Kokmen E (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51:993–999
Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, van Erp TG, Cannon TD, Toga AW (2004) Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. Neurobiol Dis 23:S2–S18
Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, Grodstein F, Wright CI, Blacker D, Rosas HD, Sperling RA, Atri A, Growdon JH, Hyman BT, Morris JC, Fischl B, Buckner RL (2009) The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 19:497–510
Thompson PM, Mega MS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, Moussai J, Holmes CJ, Cummings JL, Toga AW (2001) Cortical changes in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex 11:1–16
Chupin M, Gerardin E, Cuingnet R, Boutet C, Lemieux L, Lehericy S, Benali H, Garnero L, Colliot O (2009) Alzheimer’s disease neuroimaging initiative: fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19:579–587
Colliot O, Chetelat G, Chupin M, Desgranges B, Magnin B, Benali H, Dubois B, Garnero L, Eustache F, Lehericy S (2008) Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248:194–201
Diehl J, Grimmer T, Drzezga A, Riemenschneider M, Forstla H, Kurz A (2004) Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 25:1051–1056
Wang Y, Fan Y, Bhatt P, Davatzikos C (2010) High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. Neuroimage 50:1519–1535
Duchesne S, Caroli A, Geroldi C, Frisoni G, Collins D (2005) Predicting clinical variable from MRI features: application to MMSE in MCI. Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005) Lecture notes in computer science, Volume 3749: 392–399
Duchesne S, Caroli A, Geroldi C, Collins DL, Frisoni GB (2009) Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage 47:1363–1370
Stonnington CM, Chu C, Kloppel S, Jack CR Jr, Ashburner J, Frackowiak RS (2010) Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. Neuroimage 51:1405–1413
Fan Y, Kaufer D, Shen D (2010) Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. In Proceedings of 2010 IEEE international symposium on biomedical imaging: from nano to macro (ISBI 2010), 852–855
Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ (2011) Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging 32:2322.e19–27
Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM (2008) Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol Aging 29:514–523
Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack JCR (2009) On behalf of the Alzheimer’s disease neuroimaging initiative: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 73:294–301
Kloppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR Jr, Ashburner J, Frackowiak RSJ (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131:681–689
Fan Y, Gur RE, Gur RC, Wu X, Shen D, Calkins ME, Davatzikos C (2008) Unaffected family members and Schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study. Biol Psychiatry 63:118–124
Fan Y, Resnick SM, Wu X, Davatzikos C (2008) Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. Neuroimage 41:277–285
Vemuri P, Gunter JL, Senjem ML, Whitwell JL, Kantarci K, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2008) Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39:1186–1197
Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C (2007) COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans Med Imaging 26:93–105
Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41:1220–1227
Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011) The Alzheimer’s Disease Neuroimaging Initiative: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55:856–867
Magnin B, Mesrob L, Kinkingnehun S, Pelegrini-Issac M, Colliot O, Sarazin M, Dubois B, Lehericy S, Benali H (2009) Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51:73–83
Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227
Majumdar A, Ward RK (2009) Fast group sparse classification. Can J Electr Comput Eng 34:136–144
Huang K, Aviyente S (2007) Sparse representation for signal classification. Adv Neural Inf Process Syst 19:609–612
Chu C, Kloppel SS, Draganski CSB, Jack C Jr, Ashburner J, Frackowiak RSJ (2007) Regression analysis for clinical scores of Alzheimer’s disease using multivariate machine learning method. Hum Brain Mapp Poster, Chicago, IL, USA
Fan Y, Kaufer D, Shen D (2009) Estimating clinical variables from brain images using Bayesian regression. Alzheimer & Dementia 5:372
Franke K, Ziegler G, Kloppel S, Gaser C (2010) Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50:883–892
Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113
Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198
Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatr 141:1356–1364
Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980
He Y, Chen ZJ, Evans AC (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. Neurobiol Dis 28:4756–4766
Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99
Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3:185–205
Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1285
Guyon I, Weston J, Barnhill S, Vapnik V (2004) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422
Rakotomamonjy A (2003) Variable selection using SVM based criteria. J Mach Learn Res 3:1357–1370
Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15:3736–3745
Fadili M, Starck JL, Murtagh F (2009) Inpainting and zooming using sparse representations. Comput J 52:64–79
Hazan T, Polak S, Shashua A (2005) Sparse image coding using a 3D non-negative tensor factorization. In Proceedings of the Tenth IEEE international conference on computer vision (ICCV 2005), Volume 1:50–57
Liu M, Zhang D, Shen D (2012) Ensemble sparse classification of Alzheimer’s disease. Neuroimage 60:1106–1116
Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97
Shen D, Davatzikos C (2003) Very high resolution morphometry using mass-preserving deformations and HAMMER elastic registration. Neuroimage 18:28–41
Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43:129–159
Candes E, Romberg J (2005) l1-magic: recovery of sparse signals via convex programming. http://www.acm.caltech.edu/l1magic/downloads/l1magic.pdf
Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Kim SJ, Koh K, Lustig M, Boyd S, Gorinevsky D (2007) An interior-point method for large-scale l1-regularized least squares. IEEE J Sel Top Signal Process 1:606–617
Zhang D, Shen D (2012) Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59:895–907
Obozinski G, Taskar B, Jordan MI (2006) Multi-task feature selection. Statistics Department, UC, Berkeley
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58:267–288
Liu J, Ji S, Ye J (2009) SLEP: sparse learning with efficient projections. Arizona State University. http://www.public.asu.edu/~jye02/Software/SLEP
Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244
Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, L Whitwell J, Ward C, Dale AM, Felmlee JP, Gunter JL, Hill DL, Killiany R, Schuff N, Fox-Bosetti S, Lin C, Studholme C, DeCarli CS, Krueger G, Ward HA, Metzger GJ, Scott KT, Mallozzi R, Blezek D, Levy J, Debbins JP, Fleisher AS, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner MW (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691
Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
Wee CY, Yap PT, Shen D (2013) The Alzheimer’s disease neuroimaging initiative: prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Hum Brain Mapp
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this chapter
Cite this chapter
Cheng, B., Wee, CY., Liu, M., Zhang, D., Shen, D. (2014). Brain Disease Classification and Progression Using Machine Learning Techniques. In: Suzuki, K. (eds) Computational Intelligence in Biomedical Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7245-2_1
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7245-2_1
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-7244-5
Online ISBN: 978-1-4614-7245-2
eBook Packages: EngineeringEngineering (R0)