Skip to main content

Image Segmentation for Connectomics Using Machine Learning

  • Chapter
  • First Online:
Computational Intelligence in Biomedical Imaging
  • 1560 Accesses

Abstract

Reconstruction of neural circuits at the microscopic scale of individual neurons and synapses, also known as connectomics, is an important challenge for neuroscience. While an important motivation of connectomics is providing anatomical ground truth for neural circuit models, the ability to decipher neural wiring maps at the individual cell level is also important in studies of many neurodegenerative diseases. Reconstruction of a neural circuit at the individual neuron level requires the use of electron microscopy images due to their extremely high resolution. Computational challenges include pixel-by-pixel annotation of these images into classes such as cell membrane, mitochondria and synaptic vesicles and the segmentation of individual neurons. State-of-the-art image analysis solutions are still far from the accuracy and robustness of human vision and biologists are still limited to studying small neural circuits using mostly manual analysis. In this chapter, we describe our image analysis pipeline that makes use of novel supervised machine learning techniques to tackle this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    According to the “rule-of-thumb” in [90], one needs at least 10 ×training samples of the total number of parameters. Thus, compared to Jain et al. [39] convolutional ANN, the approach presented here needs about 27 ×less training samples, for the values given.

References

  1. Suzuki K, Horiba I, Sugie N (2003) Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Trans Pattern Anal Mach Intell 25:1582–1596

    Google Scholar 

  2. Suzuki K, Horiba I, Sugie N, Nanki M (2004) Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans Med Imag 23:330–339

    Article  Google Scholar 

  3. Sporns O, Tononi G, Ktter R (2005) The human connectome: A structural description of the human brain. PLoS Comput Biol 1:e42

    Article  Google Scholar 

  4. Briggman KL, Denk W (2006) Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol 16:562–570

    Article  Google Scholar 

  5. Mishchenko Y (2008) Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs. J Neurosci Methods 176(2):276–289

    Google Scholar 

  6. Anderson J, Jones B, Yang J-H, Shaw M, Watt C, Koshevoy P, Spaltenstein J, Jurrus E, U V K, Whitaker R, Mastronarde D, Tasdizen T, Marc R (2009) A computational framework for ultrastructural mapping of neural circuitry. PLoS Biol 7(3):e74

    Google Scholar 

  7. Mishchenko Y, Hu T, Spacek J, Mendenhall J, Harris KM, Chklovskii DB (2010) Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67:1009–1020

    Article  Google Scholar 

  8. Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomančák P, Hartenstein V (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 8(10):e1000502

    Article  Google Scholar 

  9. Bock DD, Lee W-C, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC (2011) Network anatomy and in vivo physiology of visual cortial neurons. Nature 471:177–182

    Article  Google Scholar 

  10. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  Google Scholar 

  11. Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT (2008) Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 14:782–806

    Google Scholar 

  12. Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Progr Retin Eye Res 22:607–655

    Article  Google Scholar 

  13. Sutula T (2002) Seizure-induced axonal sprouting: assessing connections between injury, local circuits, and epileptogenesis. Epilepsy Current 2:86–91

    Article  Google Scholar 

  14. Koyama R, Yamada MK, Fujisawa S, Katoh-Semba R, Matsuki N, Ikegaya Y (2004) Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus. J Neurosci 24:7215–7224

    Article  Google Scholar 

  15. Xiao YP, Wang Y, Felleman DJ (2003) A spatially organized representation of colour in macaque cortical area v2. Nature 421(6922):535–539

    Article  Google Scholar 

  16. Minsky M (1961) Microscopy apparatus. U.S. Patent number 301,467, December 1961

    Google Scholar 

  17. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning microscopy. Science 248:73–76

    Article  Google Scholar 

  18. Egner A, Hell SW (2005) Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol 15:207–215

    Article  Google Scholar 

  19. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat Meth 3:793–796

    Article  Google Scholar 

  20. Betzig E, Patterson G, Sougrat R, Lindwasser O, Olenych S, Bonifacino J, Davidson M, Lippincott-Schwartz J, Hess H (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  Google Scholar 

  21. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340

    Article  Google Scholar 

  22. Hall DH, Russell RL (1991) The posterior nervous system of the nematode caenorhaditis elegans: Serial reconstruction of identified neurons and complete pattern of synaptic interactions. J Neurosci 11(1):1–22

    Google Scholar 

  23. Chen BL, Hall DH, Chklovskii DB (2006) Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci USA 103(12):4723–4728

    Article  Google Scholar 

  24. Chklovskii DB, Vitaladevuni S, Scheffer LK (2010) Semi-automated reconstruction of neural circuits using electron microscopy. Curr Opin Neurobiol 20(5):667–675

    Article  Google Scholar 

  25. Anderson JR, Jones BW, Watt CB, Shaw MV, Yang JH, Demill D, Lauritzen JS, Lin Y, Rapp KD, Mastronarde D, Koshevoy P, Grimm B, Tasdizen T, Whitaker R, Marc RE (2011) Exploring the retinal connectome. Mol Vis 17:355–379

    Article  Google Scholar 

  26. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7(2):e1001066

    Article  Google Scholar 

  27. Deerinck TJ, Bushong EA, Thor A, Ellisman MH (2010) NCMIR methods for 3D EM: A new protocol for preparation of biological specimens for serial block face scanning electron microscopy. Microscopy and Microanalysis Meeting, Portland, OR, 1–5 August 2010

    Google Scholar 

  28. Hayworth K, Kasthuri N, Schalek R, Lichtman J (2006) Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc Microanal 12(2):86–87

    Article  Google Scholar 

  29. Tasdizen T, Koshevoy P, Grimm BC, Anderson JR, Jones BW, Watt CB, Whitaker RT, Marc RE (2010) Automatic mosaicking and volume assembly for high-throughput serial-section transmission electron microscopy. J Neurosci Meth 193(1):132–144

    Article  Google Scholar 

  30. Saalfeld S, Cardona A, Hartenstein V, Tomančák P (2010) As-rigid-as-possible mosaicking and serial section registration of large ssTEM datasets. Bioinformatics 26(12):i57–i63

    Article  Google Scholar 

  31. Tasdizen T, Koshevoy P, Grimm B, Anderson J, Jones B, Watt C, Whitaker R, Marc R (2010) Automatic mosaicking and volume assembly for high-throughput serial-section transmission electron microscopy. J Neurosci Meth 193:132–144

    Article  Google Scholar 

  32. Anderson J, Mohammed S, Grimm B, Jones B, Koshevoy P, Tasdizen T, Whitaker R, Marc R (2011) The viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets. J Microscopy 241:13–28

    Article  MathSciNet  Google Scholar 

  33. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28(12):2959–2964

    Article  Google Scholar 

  34. Soto GE, Young SJ, Martone ME, Deerinck TJ, Lamont S, Carragher BO, Hama K, Ellisman MH (1994) Serial section electron tomography: A method for three-dimensional reconstruction of large structures. NeuroImage 1(3):230–243

    Article  Google Scholar 

  35. Chen X, Winters CA, Reese TS (2008) Life inside a thin section: Tomography. J Neurosci 28(38):9321–9327

    Article  Google Scholar 

  36. Hama K, Arii T, Katayama E, Marton M, Ellisman MH (2004) Tri-dimensional morphometric analysis of astrocytic processes with high voltage electron microscopy of thick golgi preparations. J Neurocytol 33:277–285. doi:10.1023/B:NEUR.0000044189.08240.a2

    Article  Google Scholar 

  37. Kreshuk A, Straehle CN, Sommer C, Koethe U, Cantoni M, Knott G, Hamprecht FA (2011) Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS One 6(10):e24899

    Article  Google Scholar 

  38. Andres B, Köthe U, Helmstaedter M, Denk W, Hamprecht FA (2008) Segmentation of SBFSEM volume data of neural tissue by hierarchical classification. In: Rigoll G (ed) Pattern Recognition. LNCS, vol 5096. Springer, Berlin, Heidelberg, pp 142–152

    Google Scholar 

  39. Jain V, Murray J, Roth F, Turaga S, Zhigulin V, Briggman K, Helmstaedter M, Denk W, Seung H (2007) Supervised learning of image restoration with convolutional networks. IEEE 11th International Conference on Computer Vision, pp 1–8, Rio de Janeiro, Brazil, 14–21 October 2007

    Google Scholar 

  40. Jeong W-K, Beyer J, Hadwiger M, Blue R, Law C, Vazquez-Reina A, Reid RC, Lichtman J, Pfister H (2010) Secret and neurotrace: Interactive visualization and analysis tools for large-scale neuroscience data sets. IEEE Comput Graph 30(3):58–70

    Article  Google Scholar 

  41. Jurrus E, Whitaker R, Jones B, Marc R, Tasdizen T (2008) An optimal-path approach for neural circuit reconstruction. In: Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp 1609–1612, Paris, France, 14–17 May 2008

    Google Scholar 

  42. Macke J, Maack N, Gupta R, Denk W, Schölkopf B, Borst A (2008) Contour-propagation algorithms for semi-automated reconstruction of neural processes. J Neurosci Meth 167:349–357

    Article  Google Scholar 

  43. Allen BA, Levinthal C (1990) Cartos II semi-automated nerve tracing: Three-dimensional reconstruction from serial section micrographs. Comput Med Imag Graph 14(5):319–329

    Article  Google Scholar 

  44. Jurrus E, Tasdizen T, Watanabe S, Davis MW, Jorgensen EM, Whitaker RT (2008) Semi-automated reconstruction of the neuromuscular junctions in the c. elegans. In: MICCAI Workshop on Microscopic Image Analysis with Applications in Biology, New York, NY, 5–6 September 2008

    Google Scholar 

  45. Jurrus E, Watanabe S, Paiva A, Ellisman M, Jorgensen E, Tasdizen T (2012) Semi-automated neuron boundary detection and slice traversal algorithm for segmentation of neurons from electron microscopy images. Neuroinformatics 11(1):5-29

    Google Scholar 

  46. Funke J, Andres B, Hamprecht FA, Cardona A, Cook M (2011) Multi-hypothesis crf-segmentation of neural tissue in anisotropic em volumes. CoRR abs/1109.2449

    Google Scholar 

  47. Anderson JR, Mohamed S, Grimm B, Jones BW, Koshevoy P, Tasdizen T, Whitaker R, Marc RE (2010) The viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets. J Microsc 241(1):1328

    Google Scholar 

  48. Vazquez L, Sapiro G, Randall G (1998) Segmenting neurons in electronic microscopy via geometric tracing. In: Proceedings of International Conference on Image Processing, pp 814–818, San Diego, CA, 12–15 October 1998

    Google Scholar 

  49. Bertalmío M, Sapiro G, Randall G (2000) Morphing active contours. IEEE Trans Pattern Anal Mach Intell 22:733–737

    Article  Google Scholar 

  50. Jurrus E, Hardy M, Tasdizen T, Fletcher P, Koshevoy P, Chien CB, Denk W, Whitaker R (2009) Axon tracking in serial block-face scanning electron microscopy. Med Image Anal 13:180–188

    Article  Google Scholar 

  51. Reina AV, Miller E, Pfister H (2009) Multiphase geometric couplings for the segmentation of neural processes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 2020–2027, Miami, FL, 20–25 June 2009.

    Google Scholar 

  52. Jeong W-K, Beyer J, Hadwiger M, Vazquez A, Pfister H, Whitaker RT (2009) Scalable and interactive segmentation and visualization of neural processes in em datasets. IEEE Trans Visual Comput Graph 15(6):1505–1514

    Article  Google Scholar 

  53. Vazquez-Reina A, Miller E, Pfister H (2009) Multiphase geometric couplings for the segmentation of neural processes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 2020–2027, Miami, FL, 20–25 June 2009

    Google Scholar 

  54. Tasdizen T, Whitaker RT, Marc RE, Jones BW (2005) Enhancement of cell boundaries in transmission electron microscopy images. In: Proceedings of International Conference on Image Processing, vol 2, pp 129–132, Genoa, Italy, 11–14 September 2005

    Google Scholar 

  55. Kumar R, Va andzquez Reina A, Pfister H (2010) Radon-like features and their application to connectomics. In: IEEE Computer Society Conference on CVPRW, pp 186–193, San Francisco, CA, 13–18 June 2010

    Google Scholar 

  56. Akselrod-Ballin A, Bock D, Reid RC, Warfield SK (2009) Improved registration for large electron microscopy images. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp 434–437, Boston, MA, 28 June–1 July 2009

    Google Scholar 

  57. Preibisch S, Saafeld S, Tomancak P (2009) Globally optimal stitching of tiled 3d microscopic image acquisitions. Bioinformatics 25(11):1463–1465

    Article  Google Scholar 

  58. Vu N, Manjunath B (2008) Graph cut segmentation of neuronal structures from transmission electron micrographs. In: Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on, pp 725–728, San Diego, CA, 12–15 October 2008

    Google Scholar 

  59. Yang H-F, Choe Y (2009) Cell tracking and segmentation in electron microscopy images using graph cuts. In: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, 28 June–1 July 2009

    Google Scholar 

  60. Yang H-F, Choe Y (2009) 3D volume extraction of densely packed cells in em data stack by forward and backward graph cuts. Computational Intelligence for Multimedia Signal and Vision Processing, pp 47–52, Nashville, Tennessee, 30 March–2 April 2009

    Google Scholar 

  61. Kaynig V, Fuchs T, Buhmann JM (2010) Neuron geometry extraction by perceptual grouping in ssTEM images. In: IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 13–18 June 2010

    Google Scholar 

  62. Venkataraju KU, Paiva A, Jurrus E, Tasdizen T (2009) Automatic markup of neural cell membranes using boosted decision stumps. In: EEE International Symposium on Biomedical Imaging (ISBI): From Nano to Macro, Boston, MA, 28 June–1 July 2009

    Google Scholar 

  63. Jurrus E, Paiva ARC, Watanabe S, Anderson J, Whitaker BWJRT, Jorgensen EM, Marc R, Tasdizen T (2010) Detection of neuron membranes in electron microscopy images using a serial neural network architecture. Med Image Anal 14(6):770–783

    Article  Google Scholar 

  64. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  65. Freeman WT, Pasztor EC, Owen T, Carmichael Y (2000) Merl a mitsubishi electric research laboratory. Int J Comput Vis 40:2000

    Article  Google Scholar 

  66. Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning, pp 282–289, Williams College, Williamstown, MA, 28 June–1 July 2001

    Google Scholar 

  67. Kumar S, Hebert M (2003) Discriminative random fields: A discriminative framework for contextual interaction in classification. In: ICCV, pp 1150–1157, Nice, France, 14–17 October 2003

    Google Scholar 

  68. Jain V (2010) Machine Larning of Image Analysis with Convolutional Networks and Topological Constraints. PhD Thesis, MIT

    Google Scholar 

  69. Turaga SC, Briggman KL, Helmstaedter M, Denk W, Seung HS (2009) Maximin learning of image segmentation. In: Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 7–10 December 2009

    Google Scholar 

  70. Turaga SC, Murray JF, Jain V, Roth F, Helmstaedter M, Briggman KL, Denk W, Seung HS (2010) Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput 22(2):511–538

    Article  MATH  Google Scholar 

  71. Jain V, Bollmann B, Richardson M, Berger DR, Helmstaedter MN, Brigmann KL, Bowden JB, Mendenhall JM, Abraham WC, Harris KM, Kasthuri N, Hayworth KJ, Schalek R, Tapia JC, Lichtmann JW, Seung HS (2010) Boundary learning by optimization with topological constraints. In: IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 13–18 June 2010

    Google Scholar 

  72. Veeraraghavan A, Genkin AV, Vitaladevuni S, Scheffer L, Xu S, Hess H, Fetter R, Cantoni M, Knott G, Chklovskii D (2010) Increasing depth resolution of electron microscopy of neural circuits using sparse tomographic reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 13–18 June 2010

    Google Scholar 

  73. Fukushima K (1982) Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recogn 15(6):455–469

    Article  Google Scholar 

  74. Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    Google Scholar 

  75. LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks. MIT Press, Cambridge, MA, pp 255–258

    Google Scholar 

  76. Garcia C, Delakis M (2004) Convolutional face finder: A neurl architecture for fast and robust face detection. IEEE Trans Pattern Anal Mach Intell 26(11):1408–1423

    Article  Google Scholar 

  77. Osadchy R, Miller M, LeCun Y (2005) Synergistic face detection and pos estimation with energy-based model. In: Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 5–8 December 2005

    Google Scholar 

  78. Lawrence S, Giles CL, Tsoi AC, Back A (1997) Face recognition: A convolutional neural network approach. IEEE Trans Neural Network 8(1):98–113

    Article  Google Scholar 

  79. LeCun Y, Huang FJ, Bottou L (2004) Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 I.E. Computer Society Conference on Computer Vision and Pattern Recognition, vol 2, pp II–97–104, Washington, DC, 27 June–2 July 2004

    Google Scholar 

  80. Huang FJ, LeCun Y (2006) Large-scale learning with svm and convolutional nets for generic object categorization. In: IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, 17–22 June 2006

    Google Scholar 

  81. Ning F, Delhomme D, Lecun Y, Piano F, Bottou L, Barbano PE (2005) Toward automatic phenotyping of developing embryos from videos. IEEE Trans Image Process 14:1360–1371

    Article  Google Scholar 

  82. Seyedhosseini M, Kumar R, Jurrus E, Guily R, Ellisman M, Pfister H, Tasdizen T (2011) Detection of neuron membranes in electron microscopy images using multi-scale context and radon-like features. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2011. Lecture Notes in Computer Science (LNCS), vol 6891. Springer, Berlin, Heidelberg, pp 670–677

    Google Scholar 

  83. Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: International Conference on Machine Learning, vol. 382, pp 609–616, Montreal, Quebec, Canada, 2009

    Google Scholar 

  84. Norouzi M, Ranjbar M, Mori G (2009) Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, 20–25 June 2009

    Google Scholar 

  85. Hinton GE, Osindero S (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:2006

    Article  Google Scholar 

  86. Ciresan D, Giusti A, Gambardella L, Schmidhuber J (2012) Neural networks for segmenting neuronal structures in EM stacks. In: ISBI Electron Microscopy Segmentation Challenge, Barcelona, Spain, 2–5 May 2012

    Google Scholar 

  87. Tu Z (2008) Auto-context and its application to high-level vision tasks. IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8, Anchorage, Alaska, 24–26 June 2008

    Google Scholar 

  88. Tu Z, (2008) Auto-context and its application to high-level vision tasks. In: Proceedings of IEEE Computer Vision and Pattern Recognition, Anchorage, Alaska, 24–26 June 2008

    Google Scholar 

  89. Haykin S (1999) Neural networks: A comprehensive foundation, 2nd edn. Prentice-Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  90. Principe JC, Euliano NR, Lefebvre WC (2000) Neural and adaptive systems: Fundamentals through simulations. Wiley, New York

    Google Scholar 

  91. Pomerleau D (1993) Knowledge-based training of artificial neural networks for autonomous robot driving. In: Connell J, Mahadevan S (eds) Robot Learning. Kluwer Academic, Dordrecht, pp 19–43

    Chapter  Google Scholar 

  92. Wells G, Venaille C, Torras C (1996) Promising research: Vision-based robot positioning using neural networks. Image Vis Comput 14:715–732

    Article  Google Scholar 

  93. Cottrell G (1990) Extracting features from faces using compression networks: face, identity, emotion and gender recognition using holons. In: Connection models: Proceedings of the 1990 summer school. Morgan Kaufmann, San Mateo, CA, pp 328–337

    Google Scholar 

  94. Rabi G, Lu S (1998) Visual speech recognition by recurrent neural networks. J Electron Imag 7:61–69

    Article  Google Scholar 

  95. Venkatataju KU, Paiva A, Jurrus E, Tasdizen T (2009) Automatic markup of neural cell membranes using boosted decision stumps. In: Proceedings of the 6th IEEE International Symposium on Biomedical Imaging, pp 1039–1042, Boston, MA, 28 June–1 July 2009.

    Google Scholar 

  96. Leung T, Malik J (2001) Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vision 43(1):29–44

    Article  MATH  Google Scholar 

  97. Schmid C (2001) Constructing models for content-based image retrieval. In: Computer Vision and Pattern Recognition, 2001, CVPR 2001. Proceedings of the 2001 I.E. Computer Society Conference on, vol. 2, pp II–39–II–45, Kauai, HI, 8–14 December 2001

    Google Scholar 

  98. Varma M, Zisserman A (2003) Texture classification: are filter banks necessary? In: Computer Vision and Pattern Recognition, 2003. Proceedings of the 2003 I.E. Computer Society Conference on, vol. 2, pp II–691–8, Madison, WI, 16–22 June 2003

    Google Scholar 

  99. Awate SP, Tasdizen T, Whitaker RT (2006) Unsupervised Texture Segmentation with Nonparametric Neighborhood Statistics. In: Proceedings of the European Conference on Computer Vision. pp 494–507, Graz, Austria, 7–13 May 2006

    Google Scholar 

  100. Awate SP, Whitaker RT (2006) Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans Pattern Anal Mach Intell 28(3):364–376

    Article  Google Scholar 

  101. Buades A, Coll B, Morel J-M (2005) A non-local algorithm for image denoising. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 60–65, San Diego, CA, 20–26 June 2005

    Google Scholar 

  102. Tasdizen T (2008) Principal components for non-local means image denoising. In: Proceeding of International Conference on Image Processing, San Diego, California, 12–15 October 2008

    Google Scholar 

  103. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  104. Jin Y, Hoskins R, Horvitz HR (1994) Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372:780–783

    Article  Google Scholar 

  105. White JQ, Nicholas T, Gritton J, Truong L, Davidson ER, Jorgensen EM (2007) The sensory circuitry for sexual attraction in C. elegans males. Curr Biol 17:1847–1857

    Article  Google Scholar 

  106. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Contr Signals Syst 2:303–314

    Article  MathSciNet  MATH  Google Scholar 

  107. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Network 4(2):251–257

    Article  Google Scholar 

  108. Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ (2012) Trakem2 software for neural circuit reconstruction. PLoS One 7(6):e38011

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 EB005832 and 1R01NS075314. The C. elegans dataset was provided by the Jorgensen Lab at the University of Utah. The mouse neuropil dataset was provided by the National Center for Microscopy Imaging Research. The retina dataset was provided by the Marc Lab at the University of Utah. The drosophila VNC dataset was provided by the Cardona Lab at HHMI Janelia Farm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tasdizen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tasdizen, T., Seyedhosseini, M., Liu, T., Jones, C., Jurrus, E. (2014). Image Segmentation for Connectomics Using Machine Learning. In: Suzuki, K. (eds) Computational Intelligence in Biomedical Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7245-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7245-2_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7244-5

  • Online ISBN: 978-1-4614-7245-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics