Skip to main content

Mathematical Tools for Modeling Social Complex Systems

  • Chapter
  • First Online:
Complex Systems and Society

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1698 Accesses

Abstract

This chapter deals with the derivation of mathematical structures suitable for constructing models of phenomena of interest in social sciences. The reference framework is the approach of the Kinetic Theory for Active Particles (KTAP), which uses distribution functions over the microscopic states of the individuals composing the system under consideration. Modeling includes: the strategic behavior of active particles from a stochastic game perspective; a Darwinian-like evolution of the particles, which learn from past experience and evolve their strategy in time; and hints about small-network dynamics, in particular particle interactions within and among the nodes of the network. A critical analysis is finally proposed in order to assess the consistency of the mathematical tools with the main features of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acemoglu, D., Bimpikis, K., Ozdaglar, A.: Dynamics of information exchange in endogenous social networks. Tech. Rep. 16410, National Bureau of Economic Research (2010)

    Google Scholar 

  2. Acemoglu, D., Robinson, J.A.: A theory of political transitions. American Economic Review 91(4), 938–963 (2001)

    Article  Google Scholar 

  3. Acemoglu, D., Robinson, J.A.: Economic Origins of Dictatorship and Democracy. Cambridge University Press (2006)

    Google Scholar 

  4. Agrawal, A., Cockburn, I., McHale, J.: Gone but not forgotten: knowledge flows, labor mobility, and enduring social relationships. Journal of Economic Geography 6(5), 571–591 (2006)

    Article  Google Scholar 

  5. Agrawal, A., Kapur, D., McHale, J.: How do spatial and social proximity influence knowledge flows? Evidence from patent data. Journal of Urban Economics 64(2), 258–269 (2008)

    Article  Google Scholar 

  6. Ajmone Marsan, G.: New paradigms towards the modelling of complex systems in Behavioral Economics. Mathematical and Computer Modelling 50(3–4), 584–597 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ajmone Marsan, G.: On the modelling and simulation of the competition for a secession under media influence by active particles methods and functional subsystems decomposition. Computer & Mathematics with Applications 57(5), 710–728 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ajmone Marsan, G., Bellomo, N., Egidi, M.: Towards a mathematical theory of complex socio-economical systems by functional subsystems representation. Kinetic and Related Models 1(2), 249–278 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Akerlof, G.A.: The market for “lemons”: Quality uncertainty and the market mechanism. Quarterly Journal of Economics 84(3), 488-500 (1970)

    Article  Google Scholar 

  10. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alesina, A., Baqir, R., Hoxby, C.: Political jurisdictions in heterogenous communities. Journal of Political Economy 112(2) (2004)

    Google Scholar 

  12. Aletti, G., Naldi, G., Toscani, G.: First-order continuous models of opinion formation. SIAM Journal on Applied Mathematics 67(3), 837–853 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. Proceedings of the National Academy of Sciences 97(21), 11,149–11,152 (2000)

    Google Scholar 

  14. Antal, T., Traulsen, A., Ohtsuki, H., Tarnita, C.E., Nowak, M.A.: Mutation-selection equilibrium in games with multiple strategies. Journal of Theoretical Biology 258(4), 614–622 (2009)

    Article  MathSciNet  Google Scholar 

  15. Ariel, R.: Modeling Bounded Rationality. MIT Press (1998)

    Google Scholar 

  16. Arlotti, L., Bellomo, N.: Solution of a new class of nonlinear kinetic models of population dynamics. Applied Mathematics Letters 9(2), 65–70 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Arlotti, L., Bellomo, N., De Angelis, E.: Generalized kinetic (Boltzmann) models: mathematical structures and applications. Mathematical Models and Methods in Applied Sciences 12(4), 567–591 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Arlotti, L., De Angelis, E.: On the initial value problem of a class of models of the kinetic theory for active particles. Applied Mathematics Letters 24(3), 257–263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Arlotti, L., De Angelis, E., Fermo, L., Lachowicz, M., Bellomo, N.: On a class of integro-differential equations modeling complex systems with nonlinear interactions. Applied Mathematics Letters 25(3), 490–495 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Arthur, W.B., Durlauf, S.N., Lane, D.A. (eds.): The Economy as an Evolving Complex System II, Studies in the Sciences of Complexity, vol. XXVII. Addison-Wesley (1997)

    Google Scholar 

  21. Axelrod, R.M.: The complexity of cooperation: Agent-based models of competition and collaboration. Princeton University Press, Princeton (1997)

    Google Scholar 

  22. Azoulay, P., Zivin, J.S.G., Sampat, B.N.: The diffusion of scientific knowledge across time and space: Evidence from professional transitions for the superstars of medicine. Working Paper 16683, National Bureau of Economic Research (2011)

    Google Scholar 

  23. Bagarello, F., Oliveri, F.: A phenomenological operator description of interactions between populations with applications to migration. Mathematical Models and Methods in Applied Sciences 23(3), 471–492 (2013)

    Article  MATH  Google Scholar 

  24. Ball, P.: Why Society is a Complex Matter. Springer-Verlag, Heidelberg (2012)

    Book  Google Scholar 

  25. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences 105(4), 1232–1237 (2008)

    Article  Google Scholar 

  26. Banasiak, J., Lachowicz, M.: Multiscale approach in mathematical biology. Comment on “Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives” by N. Bellomo and B. Carbonaro. Physics of Life Reviews 8, 19–20 (2011)

    Article  Google Scholar 

  27. Barabási, A.L.: The Science of Networks. Perseus, Cambridge MA (2022)

    Google Scholar 

  28. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  29. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272(1), 173–187 (1999)

    Article  Google Scholar 

  30. Barbera, S., Maschler, M., Shalev, J.: Voting for voters: A model of electoral evolution. Games and Economic Behavior 37(1), 40–78 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Barca, F.: An Agenda for a Reformed Cohesion Policy: A place-based approach to meeting European Union challenges and expectations. EERI Research Paper Series EERI_RP_2008_06, Economics and Econometrics Research Institute (EERI), Brussels (2008)

    Google Scholar 

  32. Barrat, A., Bathélemy, M., Vespignani, A.: The Structure and Dynamics of Networks. Princeton University Press, Princeton NJ (2006)

    Google Scholar 

  33. Bastolla, U., Fortuna, M.A., Pascual-García, A., Ferrera, A., Luque, B., Bascompte, J.: The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009)

    Article  Google Scholar 

  34. Bellomo, N.: Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2007)

    Google Scholar 

  35. Bellomo, N.: Modeling the hiding-learning dynamics in large living systems. Applied Mathematics Letters 23(8), 907–911 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives. Mathematical Models and Methods in Applied Sciences 22(1), 1130,001 (37 pages) (2012)

    Google Scholar 

  37. Bellomo, N., Berestycki, H., Brezzi, F., Nadal, J.P.: Mathematics and complexity in life and human sciences. Mathematical Models and Methods in Applied Sciences 19(supp01), 1385–1389 (2009)

    Google Scholar 

  38. Bellomo, N., Coscia, V.: Sources of nonlinearity in the kinetic theory of active particles with focus on the formation of political opinions. In: E. Mitidieri, V.D. Radulescu, J. Serrin (eds.) Proceedings of the Conference on Nonlinear Partial Differential Equations, Contemporary Mathematics Series of the American Mathematical Society. American Mathematical Society, Philadelphia (2013)

    Google Scholar 

  39. Bellomo, N., Herrero, M.A., Tosin, A.: On the dynamics of social conflicts looking for the Black Swan. Kinetic and Related Models 6(3), (2013)

    Google Scholar 

  40. Bellomo, N., Knopoff, D., Soler, J.: On the difficult interplay between life, “complexity”, and mathematical sciences. Mathematical Models and Methods in Applied Sciences 23, (2013)

    Google Scholar 

  41. Bellomo, N., Lods, B., Revelli, R., Ridolfi, L.: Generalized collocation methods: Solutions to nonlinear problems. Modeling and Simulation In Science, Engineering and Technology. Birkhäuser, Boston (2007)

    Google Scholar 

  42. Bellomo, N., Piccoli, B., Tosin, A.: Modeling crowd dynamics from a complex system viewpoint. Mathematical Models and Methods in Applied Sciences 22, 1230,004 (29 pages) (2012)

    Google Scholar 

  43. Bellomo, N., Soler, J.: On the mathematical theory of the dynamics of swarms viewed as complex systems. Mathematical Models and Methods in Applied Sciences 22(supp01), 1140,006 (29 pages) (2012)

    Google Scholar 

  44. Bellouquid, A., Delitala, M.: Mathematical modeling of complex biological systems: A kinetic theory approach. Modeling and Simulation In Science, Engineering and Technology. Birkhäuser, Boston (2006)

    Google Scholar 

  45. Berinsky, A.J., Burns, N., Traugott, M.W.: Who votes by mail?: A dynamic model of the individual-level consequences of voting-by-mail systems. Public Opinion Quarterly 65(2), 178–197 (2001)

    Article  Google Scholar 

  46. Bertotti, M.L.: Modelling taxation and redistribution: A discrete active particle kinetic approach. Applied Mathematics and Computation 217(2), 752–762 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bertotti, M.L.: On a class of dynamical systems with emerging cluster structure. Journal of Differential Equations 249(11), 2757–2770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bertotti, M.L., Delitala, M.: From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences. Mathematical Models and Methods in Applied Sciences 14(7), 1061–1084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Bertotti, M.L., Delitala, M.: Conservation laws and asymptotic behavior of a model of social dynamics. Nonlinear Analysis: Real World Applications 9(1), 183–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bertotti, M.L., Delitala, M.: On a discrete generalized kinetic approach for modelling persuader’s influence in opinion formation processes. Mathematical and Computer Modelling 48(7), 1107–1121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bertotti, M.L., Delitala, M.: On the existence of limit cycles in opinion formation processes under time periodic influence of persuaders. Mathematical Models and Methods in Applied Sciences 18(6), 913–934 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Bertotti, M.L., Delitala, M.: Cluster formation in opinion dynamics: a qualitative analysis. Zeitschrift für angewandte Mathematik und Physik 61(4), 583–602 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Bertotti, M.L., Modanese, G.: From microscopic taxation and redistribution models to macroscopic income distributions. Physica A 390(21–22), 3782–3793 (2011)

    Article  Google Scholar 

  54. Bettencourt, L., Lobo, J., Helbing, D., Kühnert, C., West, G.B.: Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences 104(17), 7301 (2007)

    Article  Google Scholar 

  55. Bisi, M., Spiga, G., Toscani, G.: Kinetic models of conservative economies with wealth redistribution. Communications in Mathematical Sciences 7(4), 901–916 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Borjas, G.J.: Economic theory and international migration. International Migration Review 23(3), 457–485 (1989)

    Article  Google Scholar 

  57. Bressan, A.: Bifurcation analysis of a non-cooperative differential game with one weak player. Journal of Differential Equations 248(6), 1297–1314 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Bressan, A.: Noncooperative differential games. A tutorial (2010). URL http://descartes.math.psu.edu/bressan/PSPDF/game-lnew.pdf. Lecture Notes for a Summer Course

  59. Bressan, A., Shen, W.: Semi-cooperative strategies for differential games. International Journal of Game Theory 32(4), 561–593 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  60. Bursik, R.J.: Social disorganization and theories of crime and delinquency: Problems and prospects. Criminology 26(4), 519–551 (1988)

    Article  Google Scholar 

  61. Camilli, F., Capuzzo Dolcetta, I., Falcone, M.: Preface. Networks and Heterogeneous Media 7(2), i–ii (2012). Special Issue on Mean Field Games

    Google Scholar 

  62. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Tavarone, R.: From empirical data to inter-individual interactions: Unveiling the rules of collective animal behavior. Mathematical Models and Methods in Applied Sciences 20(supp01), 1491–1510 (2010)

    Google Scholar 

  63. Cebula, R.J., Vedder, R.K.: A note on migration, economic opportunity, and the quality of life. Journal of Regional Science 13(2), 205–211 (1973)

    Article  Google Scholar 

  64. Cohen, W.M., Levinthal, D.A.: Absorptive capacity: a new perspective on learning and innovation. Administrative Science Quarterly 35(1), 128–152 (1990)

    Article  Google Scholar 

  65. Comincioli, V., Della Croce, L., Toscani, G.: A Boltzmann-like equation for choice formation. Kinetic and Related Models 2(1), 135–149 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  66. Coscia, V., Fermo, L., Bellomo, N.: On the mathematical theory of living systems II: The interplay between mathematics and system biology. Computers & Mathematics with Applications 62(10), 3902–3911 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. Cowan, R., Jonard, N.: Network structure and the diffusion of knowledge. Journal of Economic Dynamics and Control 28(8), 1557–1575 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. Crescenzi, R., Rodriguez-Pose, A.: Innovation and Regional Growth in the European Union. Springer, Berlin, Heidelberg (2011)

    Book  Google Scholar 

  69. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Modeling & Simulation 9(1), 155–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  70. Cristiani, E., Piccoli, B., Tosin, A.: How can macroscopic models reveal self-organization in traffic flow? In: Proceedings of the 51st IEEE Conference on Decision and Control (2012)

    Google Scholar 

  71. Cushing, B., Poot, J.: Crossing boundaries and borders: Regional science advances in migration modelling. Papers in Regional Science 83(1), 317–338 (2004)

    Google Scholar 

  72. De Lillo, S., Bellomo, N.: On the modeling of collective learning dynamics. Applied Mathematics Letters 24(11), 1861–1866 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  73. De Lillo, S., Delitala, M., Salvatori, C.: Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles. Mathematical Models and Methods in Applied Sciences 19(1), 1405–1425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  74. De Montis, A., Barthélemy, M., Chessa, A., Vespignani, A.: The structure of inter-urban traffic: A weighted network analysis. Environment and Planning B 34, 905–924 (2007)

    Article  Google Scholar 

  75. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  76. Dobson, D., St. Angelo, D.: Party identification and the floating vote: some dynamics. The American Political Science Review 69(2), 481–490 (1975)

    Google Scholar 

  77. Dreber, A., Nowak, M.A.: Gambling for global goods. Proceedings of the National Academy of Sciences 105(7), 2261 (2008)

    Article  Google Scholar 

  78. Düring, B., Markowich, P., Pietschmann, J.F., Wolfram, M.T.: Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders. Proceedings of the Royal Society A 465(2112), 3687–3708 (2009)

    Article  MATH  Google Scholar 

  79. Dyer, J.R.G., Johansson, A., Helbing, D., Couzin, I., Krause, J.: Leadership, consensus decision making and collective behaviour in humans. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1518), 781–789 (2009)

    Article  Google Scholar 

  80. Dyson, J., Villella-Bressan, R., Webb, G.F.: The steady state of a maturity structured tumor cord cell population. Discrete and Continous Dynamical Systems B 4(1), 115–134 (2004)

    MathSciNet  MATH  Google Scholar 

  81. Ehrhardt, G.C.M.A., Marsili, M., Vega-Redondo, F.: Phenomenological models of socioeconomic network dynamics. Physical Review E 74(3), 036,106 (2006)

    Article  MathSciNet  Google Scholar 

  82. Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. The MIT Press (1996)

    Google Scholar 

  83. Fudenberg, D., Nowak, M.A., Taylor, C., Imhof, L.A.: Evolutionary game dynamics in finite populations with strong selection and weak mutation. Theoretical Population Biology 70(3), 352–363 (2006)

    Article  MATH  Google Scholar 

  84. Galam, S.: Collective beliefs versus individual inflexibility: The unavoidable biases of a public debate. Physica A 390(17), 3036–3054 (2011)

    Article  Google Scholar 

  85. Gauvin, L., Vannimenus, J., Nadal, J.P.: Phase diagram of a Schelling segregation model. The European Physical Journal B 70(2), 293–304 (2009)

    Article  Google Scholar 

  86. Gerber, A., Karlan, D.S., Bergan, D.: Does the media matter? A field experiment measuring the effect of newspapers on voting behavior and political opinions. Discussion paper 12, Yale University, Department of Economics (2006). Yale Working Papers on Economic Applications and Policy

    Google Scholar 

  87. Gintis, H.: Beyond Homo Economicus: evidence from experimental economics. Ecological Economics 35(3), 311–322 (2000)

    Article  Google Scholar 

  88. Gintis, H.: Game theory evolving: A problem-centered introduction to modeling strategic behavior. Princeton University Press (2000)

    Google Scholar 

  89. Goyal, S.: Connections: An introduction to the economics of networks. Princeton University Press (2009)

    Google Scholar 

  90. Goyal, S., Vega-Redondo, F.: Network formation and social coordination. Games and Economic Behavior 50(2), 178–207 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  91. Granovetter, M.S.: The strength of weak ties. American Journal of Sociology 78(6), 1360–1380 (1973)

    Article  Google Scholar 

  92. Guéant, O., Lasry, J., Lions, P.: Mean field games and applications. In: Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Mathematics, vol. 2003, pp. 205–266. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  93. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402(supp), C47–C52 (1999)

    Google Scholar 

  94. Helbing, D.: Stochastic and Boltzmann-like models for behavioral changes, and their relation to game theory. Physica A 193(2), 241–258 (1993)

    Article  MathSciNet  Google Scholar 

  95. Helbing, D.: Quantitative sociodynamics: Stochastic methods and models of social interaction processes. Springer Verlag (2010)

    Google Scholar 

  96. Helbing, D.: New ways to promote sustainability and social well-being in a complex, strongly interdependent world: The futurist approach. In: P. Ball (ed.) Why Society is a Complex Matter, Lecture Notes in Mathematics, pp. 55–60. Springer, Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  97. Helbing, D.: Social Self-Organization. Springer-Verlag, Berlin (2012)

    Book  Google Scholar 

  98. Helbing, D., Johansson, A.: Pedestrian, crowd, and evacuation dynamics. In: R.A. Meyers (ed.) Encyclopedia of Complexity and Systems Science, vol. 16, pp. 6476–6495. Springer, New York (2009)

    Chapter  Google Scholar 

  99. Helbing, D., Sigmeier, J., Lämmer, S.: Self-organized network flows. Networks and Heterogeneous Media 2(2), 193–210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  100. Helbing, D., Szolnoki, A., Perc, M., Szabó, G.: Defector-accelerated cooperativeness and punishment in public goods games with mutations. Physical Review E 81(5), 057,104 (2010)

    Google Scholar 

  101. Helbing, D., Yu, W.: The outbreak of cooperation among success-driven individuals under noisy conditions. Proceedings of the National Academy of Sciences 106(10), 3680–3685 (2009)

    Article  Google Scholar 

  102. Helbing, D., Yu, W.: The future of social experimenting. Proceedings of the National Academy of Sciences 107(12), 5265–5266 (2010)

    Article  Google Scholar 

  103. Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., McElreath, R.: In search of homo economicus: behavioral experiments in 15 small-scale societies. The American Economic Review 91(2), 73–78 (2001)

    Article  Google Scholar 

  104. Herbert, S.: A behavioral model of rational choice. In: Models of Man, Social and Rational: Mathematical Essays on Rational Human Behavior in a Social Setting. Wiley, New York (1957)

    Google Scholar 

  105. Herbert, S.: Bounded rationality and organizational learning. Organization Science 2(1), 125–134 (1991)

    Article  MathSciNet  Google Scholar 

  106. Herrero, M.A.: Through a glass, darkly: biology seen from mathematics: comment on “Toward a mathematical theory of living systems focusing on developmental biology and evolution: a review and perspectives” by N. Bellomo and B. Carbonaro. Physics of Life Reviews 8(1), 21 (2011)

    Article  Google Scholar 

  107. Jensen, M.B., Johnson, B., Lorenz, E., Lundvall, B.Å.: Forms of knowledge and modes of innovation. Research Policy 36(5), 680–693 (2007)

    Article  Google Scholar 

  108. Kirman, A.: Complex Economics: Individual and collective rationality. Routledge, London (2011)

    Google Scholar 

  109. Kirman, A.P., Vriend, N.J.: Learning to be loyal. A study of the Marseille fish market, Lecture Notes in Economics and Mathematical Systems, vol. 484. Springer (2000)

    Google Scholar 

  110. Kirman, A.P., Zimmermann, J.B.: Economics with Heterogeneous Interacting Agents. No. 503 in Lecture Notes in Economics and Mathematical Systems. Springer, Berlin Heidelberg (2001)

    Google Scholar 

  111. Knopoff, D.: On the modeling of migration phenomena on small networks. Mathematical Models and Methods in Applied Sciences 23(3), 541–563 (2012)

    Article  Google Scholar 

  112. Lachowicz, M.: Individually-based Markov processes modeling nonlinear systems in mathematical biology. Nonlinear Analysis: Real World Applications 12(4), 2396–2407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  113. Langer, P., Nowak, M.A., Hauert, C.: Spatial invasion of cooperation. Journal of Theoretical Biology 250(4), 634–641 (2008)

    Article  MathSciNet  Google Scholar 

  114. Lasry, J.M., Lions, P.L.: Mean field games. Japanese Journal of Mathematics 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  115. Lipsey, R.G., Lancaster, K.: The general theory of second best. The Review of Economic Studies 24(1), 11–32 (1956)

    Article  Google Scholar 

  116. Maldarella, D., Pareschi, L.: Kinetic models for socio-economic dynamics of speculative markets. Physica A 391(3), 715–730 (2012)

    Article  Google Scholar 

  117. Markus, G.B., Converse, P.E.: A dynamic simultaneous equation model of electoral choice. The American Political Science Review 73(4), 1055–1070 (1979)

    Article  Google Scholar 

  118. Marvel, S.A., Kleinberg, J., Kleinberg, R.D., Strogatz, S.H.: Continuous-time model of structural balance. Proceedings of the National Academy of Sciences 108(5), 1771–1776 (2011)

    Article  Google Scholar 

  119. May, R.M.: Uses and abuses of Mathematics in Biology. Science 303(5659), 790–793 (2004)

    Article  Google Scholar 

  120. Mayr, E.: The philosophical foundations of Darwinism. Proceedings of the American Philosphical Society 145(4), 488–495 (2001)

    Google Scholar 

  121. Milgram, S.: The small world problem. Psychology Today 2(1), 60–67 (1967)

    MathSciNet  Google Scholar 

  122. Morgenstern, O., Von Neumann, J.: Theory of games and economic behavior. Princeton University Press (1953)

    Google Scholar 

  123. Nowak, M.A.: Evolutionary Dynamics. Exploring the Equations of Life. Harvard University Press (2006)

    MATH  Google Scholar 

  124. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Article  Google Scholar 

  125. Nowak, M.A., Ohtsuki, H.: Prevolutionary dynamics and the origin of evolution. Proceedings of the National Academy of Sciences 105(39), 14,924–14,927 (2008)

    Google Scholar 

  126. Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Science 303(5659), 793–799 (2004)

    Article  Google Scholar 

  127. Nuño, J.C., Herrero, M.A., Primicerio, M.: A mathematical model of a criminal-prone society. Discrete and Continuous Dynamical Systems - Series S 4(1), 193–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  128. OECD: Divided We Stand: Why Inequality Keeps Rising. OECD Publishing (2011)

    Google Scholar 

  129. OECD: Regional Outlook, Building Resilient Regions for Stronger Economies. OECD Publishing (2011)

    Google Scholar 

  130. Ohtsuki, H., Pacheco, J.M., Nowak, M.A.: Evolutionary graph theory: Breaking the symmetry between interaction and replacement. Journal of Theoretical Biology 246(4), 681–694 (2007)

    Article  MathSciNet  Google Scholar 

  131. Olson, M.: Dictatorship, democracy, and development. American Political Science Review 87(3), 567–576 (1993)

    Article  Google Scholar 

  132. Osborne, M.J., Rubinstein, A.: A course in game theory. The MIT press (1994)

    Google Scholar 

  133. Perthame, B.: Transport Equations in Biology. Birkhäuser (2007)

    Google Scholar 

  134. Piccoli, B., Tosin, A.: Pedestrian flows in bounded domains with obstacles. Continuum Mechanics and Thermodynamics 21(2), 85–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  135. Piff, P.K., Stancato, D.M., Côté, S., Mendoza-Denton, R., Keltner, D.: Higher social class predicts increased unethical behavior. Proceedings of the National Academy of Sciences 109(11), 4086–4091 (2012)

    Google Scholar 

  136. Rand, D.G., Arbesman, S., Christakis, N.A.: Dynamic social networks promote cooperation in experiments with humans. Proceedings of the National Academy of Sciences 108(48), 19,193–19,198 (2011)

    Google Scholar 

  137. Sah, R.K.: Social osmosis and patterns of crime. Journal of Political Economy 99(6), 1272–1295 (1991)

    Article  Google Scholar 

  138. Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proceedings of the National Academy of Sciences 103(9), 3490–3494 (2006)

    Article  Google Scholar 

  139. Santos, F.C., Vasconcelos, V., Santos, M.D., Neves, P., Pacheco, J.M.: Evolutionary dynamics of climate change under collective-risk dilemmas. Mathematical Models and Methods in Applied Sciences 22, 1140,004 (17 pages) (2012)

    Google Scholar 

  140. Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009)

    Article  Google Scholar 

  141. Schrödinger, E.: What is Life? The Physical Aspect of the Living Cell. Cambridge University Press, Cambridge (1944)

    Google Scholar 

  142. Short, M.B., Brantingham, P.J., Bertozzi, A.L., Tita, G.E.: Dissipation and displacement of hotspots in reaction-diffusion models of crime. Proceedings of the National Academy of Sciences 107(9), 3961–3965 (2010)

    Article  Google Scholar 

  143. Short, M.B., D’Orsogna, M.R., Pasour, V.B., Tita, G.E., Brantingham, P.J., Bertozzi, A.L., Chayes, L.B.: A statistical model of criminal behavior. Mathematical Models and Methods in Applied Sciences 18(S1), 1249–1267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  144. Sigmund, K.: The Calculus of Selfishness. Princeton University Series in Theoretical and Computational Biology, Princeton, USA (2011)

    Google Scholar 

  145. Simon, H.A.: Theories of decision-making in Economics and Behavioral Science. The American Economic Review 49(3), 253–283 (1959)

    Google Scholar 

  146. Spolaore, E.: Civil conflict and secessions. Economics of Governance 9(1), 45–63 (2009)

    Article  Google Scholar 

  147. Stiglitz, J.E.: Information and the change in the paradigm in economics. The American Economic Review 92(3), 460–501 (2009)

    Article  Google Scholar 

  148. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  149. Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable. Random House, New York City (2007)

    Google Scholar 

  150. Taleb, N.N.: Force et fragilité. Réflexions philosophiques et empiriques. Les Belles Lettres, Paris (2010)

    Google Scholar 

  151. Thaler, R.H.: From Homo Economicus to Homo Sapiens. The Journal of Economic Perspectives 14(1), 133–141 (2000)

    Article  Google Scholar 

  152. Toscani, G.: Kinetic models of opinion formation. Communications in Mathematical Sciences 4(3), 481–496 (2006)

    MathSciNet  MATH  Google Scholar 

  153. Traulsen, A., Hauert, C., De Silva, H., Nowak, M.A., Sigmund, K.: Exploration dynamics in evolutionary games. Proceedings of the National Academy of Sciences 106(3), 709–712 (2009)

    Article  MATH  Google Scholar 

  154. Traulsen, A., Iwasa, Y., Nowak, M.A.: The fastest evolutionary trajectory. Journal of Theoretical Biology 249(3), 617–623 (2007)

    Article  MathSciNet  Google Scholar 

  155. Traulsen, A., Pacheco, J.M., Nowak, M.A.: Pairwise comparison and selection temperature in evolutionary game dynamics. Journal of Theoretical Biology 246(3), 522–529 (2007)

    Article  MathSciNet  Google Scholar 

  156. Turchin, P.: Complex population dynamics: a theoretical/empirical synthesis, vol. 35. Princeton University Press (2003)

    Google Scholar 

  157. Van Kempen, E.T.: The dual city and the poor: social polarisation, social segregation and life chances. Urban Studies 31(7), 995 (1994)

    Article  Google Scholar 

  158. Vega-Redondo, F.: Complex social networks, vol. 44. Cambridge University Press (2007)

    Google Scholar 

  159. Von Hippel, E.: “Sticky information” and the locus of problem solving: Implications for innovation. Management Science 40(4), 429–439 (1994)

    Article  Google Scholar 

  160. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  161. Webb, G.F.: Theory of Nonlinear Age-dependent Population Dynamics. Dekker, New York (1985)

    MATH  Google Scholar 

  162. Weidlich, W.: Sociodynamics: A Systematic Approach to Modeling the Social Sciences. Harwood, Academic, Amsterdam (2002)

    Google Scholar 

  163. Wood, A.J., Ackland, G.J., Dyke, J.G., Williams, H.T.P., Lenton, T.M.: Daisyworld: A review. Reviews of Geophysics 46(1), RG1001 (23 pages) (2008)

    Google Scholar 

  164. Yu, W., Helbing, D.: Game theoretical interactions of moving agents. In: Simulating Complex Systems by Cellular Automata, Understanding Complex Systems, Chapter 10, pp. 219–239. Springer, Berlin Heidelberg (2010)

    Google Scholar 

  165. Zhao, Z., Kirou, A., Ruszczycki, B., Johnson, N.F.: Dynamical clustering as a generator of complex system dynamics. Mathematical Models and Methods in Applied Sciences 19(supp01), 1539–1566 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Nicola Bellomo, Giulia Ajmone, Andrea Tosin

About this chapter

Cite this chapter

Ajmone Marsan, G., Bellomo, N., Tosin, A. (2013). Mathematical Tools for Modeling Social Complex Systems. In: Complex Systems and Society. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7242-1_2

Download citation

Publish with us

Policies and ethics