Cluster SIMS

Chapter

Abstract

Secondary ion mass spectrometry (SIMS) is one of the most powerful techniques for material analysis. Sputtering of a solid induced by atomic ion bombardment leads to linear cascade collisions resulting in damage under the surface. Static SIMS, a technique in which the primary ion beam dose is restricted so that only 1 % of the surface is impacted by a primary ion, allows molecular information to be extracted from the sample that is representative of its chemistry [1]. A number of studies have shown that the sputtering and secondary ion formation efficiency improve with increasing the mass of the primary particles [2–16]. The projectiles such as Cs+(CsI) n [2], (SF5 +) [13], massive glycerol cluster [17–20], C60 + [9], Au3 + [10,11], and Bi3 + [21,22] have enabled the acquisition of SIMS spectra with highly enhanced sensitivity. It has been shown that some of the cluster ion beams have the potential to increase the secondary ion yields by more than three orders of magnitude compared with Ga [9,21].

Keywords

Surfactant Glycerol Polystyrene Methacrylate Tacrolimus 

References

  1. 1.
    Benninghoven A (1970) Z Physik 230:403CrossRefGoogle Scholar
  2. 2.
    Blain MG, Della-Negra S, Joret H, Le Beyec Y, Schweikert EA (1989) Phys Rev Lett 63:1625CrossRefGoogle Scholar
  3. 3.
    Beuhler RJ, Friedman L (1989) Int J Mass Spectrom Ion Process 94:25CrossRefGoogle Scholar
  4. 4.
    Appelhans AD, Delmore JE (1989) Anal Chem 61:1087CrossRefGoogle Scholar
  5. 5.
    Colla TJ, Aderjan R, Kissel R, Urbassek HM (2000) Phys Rev B 62:8487CrossRefGoogle Scholar
  6. 6.
    Garrison BJ, Delcorte A, Krantzman KD (2000) Acc Chem Res 33:69CrossRefGoogle Scholar
  7. 7.
    Eusepi F, Tomsic A, Gebhardt CR (2003) Anal Chem 75:5124CrossRefGoogle Scholar
  8. 8.
    Davies N, Weibel DE, Blenkinsopp Lockyer PN, Hill R, Vickerman JC (2003) Appl Surf Sci 203:223CrossRefGoogle Scholar
  9. 9.
    Weibel D, Wong S, Lockyer N, Blenkinsopp P, Rowland H, Vickerman JC (2003) Anal Chem 75:1754CrossRefGoogle Scholar
  10. 10.
    Tempez A, Schultz JA, Della-Negra S, Depauw J, Jacquet D, Novikov A, Lebeyec Y, Pautrat M, Caroff M, Ugarov M, Bensaoula H, Gonin M, Fuhrer K, Woods A (2004) Rapid Commun Mass Spectrom 18:371CrossRefGoogle Scholar
  11. 11.
    Touboul D, Halgand F, Brunelle A, Kersting R, Tallarek E, Hagenhoff B, Laprevote O (2004) Anal Chem 76:1550CrossRefGoogle Scholar
  12. 12.
    Postawa Z, Czerwiński B, Szerwczyk M, Smiley EJ, Winograd N, Garrison B (2004) J Phys Chem B 108:7831CrossRefGoogle Scholar
  13. 13.
    Mahoney CM, Roberson SV, Gillen G (2004) Anal Chem 76:3199CrossRefGoogle Scholar
  14. 14.
    Novikov A, Caroff M, Della-Negra S, Depauw J, Fallavier M, Beyec YL, Pautrat M, Schultz JA, Tempez A, Woods AS (2005) Rapid Commun Mass Spectrom 19:1851CrossRefGoogle Scholar
  15. 15.
    Winograd N (2005) Anal Chem 143A–149AGoogle Scholar
  16. 16.
    Czerwiński B, Samson R, Garrison BJ, Winograd N, Postawa Z (2006) Vacuum 81:167CrossRefGoogle Scholar
  17. 17.
    Mahoney JF, Perel J, Ruatta SA, Martino PA, Husain S, Lee TD (1991) Rapid Commun Mass Spectrom 5:441CrossRefGoogle Scholar
  18. 18.
    Mahoney JF, Perel J, Lee TD, Martino PA, Williams P (1992) J Am Soc Mass Spectrom 3:311CrossRefGoogle Scholar
  19. 19.
    Mahoney JF, Cornett DS, Lee TD (1994) Rapid Commun Mass Spectrom 8:403CrossRefGoogle Scholar
  20. 20.
    Cornett DS, Lee TD, Mahoney JF (1994) Rapid Commun Mass Spectrom 8:996CrossRefGoogle Scholar
  21. 21.
    Kollmer F (2004) Appl Surf Sci 231–232:153CrossRefGoogle Scholar
  22. 22.
    Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprévote O (2005) J Am Soc Mass Spectrom 16:1608CrossRefGoogle Scholar
  23. 23.
    Fabris D, Wu Z, Fenslau CC (1995) J Mass Spectrom 30:140CrossRefGoogle Scholar
  24. 24.
    Aksyonov SA, Williams P (2001) Rapid Commun Mass Spectrom 15:2001CrossRefGoogle Scholar
  25. 25.
    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A (2001) Mater Sci Eng R34:231Google Scholar
  26. 26.
    Toyoda N, Matsuo J, Yamada I (2004) Nucl Instrum Methods Phys Res B 216:379CrossRefGoogle Scholar
  27. 27.
    Seki T, Matsuo J (2007) Surf Coat Technol 201:8646CrossRefGoogle Scholar
  28. 28.
    Rabbani S, Barber AM, Fletcher JS, Lockyer NP, Vickerman JC (2011) Anal Chem 83:3793CrossRefGoogle Scholar
  29. 29.
    Lee JLS, Ninomiya S, Matsuo J, Gilmore IS, Seah MP, Shard AG (2010) Anal Chem 82:98CrossRefGoogle Scholar
  30. 30.
    Hiraoka K, Asakawa D, Fujimaki S, Takamizawa A, Mori K (2006) Eur Phys J D 38:225CrossRefGoogle Scholar
  31. 31.
    Hiraoka K, Mori K, Asakawa D (2006) J Mass Spectrom 41:894CrossRefGoogle Scholar
  32. 32.
    Mori K, Asakawa D, Sunner J, Hiraoka K (2006) Rapid Commun Mass Spectrom 20:2596CrossRefGoogle Scholar
  33. 33.
    Hirabayashi A, Sakairi M, Koizumi H (1994) Anal Chem 66:4557CrossRefGoogle Scholar
  34. 34.
    Hirabayashi A, Sakairi M, Koizumi H (1995) Anal Chem 67:2878CrossRefGoogle Scholar
  35. 35.
    Asakawa D, Mori K, Hiraoka K (2008) Appl Surf Sci 255:1217CrossRefGoogle Scholar
  36. 36.
    Wolf KV, Cole DA, Bemasek SL (2002) Anal Chem 74:5009CrossRefGoogle Scholar
  37. 37.
    Hiraoka K, Sakai Y, Iijima Y, Asakawa D, Mori K (2009) Appl Surf Sci 255:8947CrossRefGoogle Scholar
  38. 38.
    McMahon JM, Dookeran NN, Todd PJ (1995) J Am Soc Mass Spectrom 6:1047CrossRefGoogle Scholar
  39. 39.
    Asakawa D, Chen LC, Hiraoka K (2009) J Mass Spectrom 44:945CrossRefGoogle Scholar
  40. 40.
    Sakai Y, Iijima Y, Takaishi R, Asakawa D, Hiraoka K (2009) J Surf Anal 15:283Google Scholar
  41. 41.
    Sakai Y, Iijima Y, Takaishi R, Asakawa D, Hiraoka K (2009) J Vac Sci Technol A 27:743CrossRefGoogle Scholar
  42. 42.
    Sakai Y, Iijima Y, Asakawa D, Hiraoka K (2010) Surf Interface Anal 42:658CrossRefGoogle Scholar
  43. 43.
    Sakai Y, Iijima Y, Mukou S, Hiraoka K (2011) Surf Interface Anal 43:167CrossRefGoogle Scholar
  44. 44.
    Hiraoka K, Iijima Y, Sakai Y (2011) Surf Interface Anal 43:236CrossRefGoogle Scholar
  45. 45.
    Hiraoka K, Sakai Y, Iijima Y (2010) J Vac Sci Technol A 28:510CrossRefGoogle Scholar
  46. 46.
    Hiraoka K, Takaishi R, Asakawa D, Sakai Y, Iijima Y (2009) J Vac Sci Technol A 27:748CrossRefGoogle Scholar
  47. 47.
    Conlan XA, Gilmore IS, Henderson A, Lockyer NP, Vickerman JC (2006) Appl Surf Sci 252:6562CrossRefGoogle Scholar
  48. 48.
    Carter G (2001) J Phys D: Appl Phys 34:R1CrossRefGoogle Scholar
  49. 49.
    Asakawa D, Yoshimura K, Takeda S, Hiraoka K (2010) J Mass Spectrom 45:437Google Scholar
  50. 50.
    Asakawa D, Fujimaki S, Hashimoto Y, Mori K, Hiraoka K (2007) Rapid Commun Mass Spectrom 21:1579CrossRefGoogle Scholar
  51. 51.
    Kudaka I, Asakawa D, Mori K, Hiraoka K (2008) J Mass Spectrom 43:436CrossRefGoogle Scholar
  52. 52.
    Mori K, Hiraoka K (2008) Int J Mass Spectrom 269:95CrossRefGoogle Scholar
  53. 53.
    Sakai Y, Iijima Y, Hiraoka K (2008) Surf Sci 15:172Google Scholar
  54. 54.
    Sakai Y, Ninomiya S, Hiraoka K (2011) Surf Interface Anal 43:1605CrossRefGoogle Scholar
  55. 55.
    Sakai Y, Ninomiya S, Hiraoka K (2012) Surf Interface Anal 44:938CrossRefGoogle Scholar
  56. 56.
    Bradley RM, Harper JME (1988) J Vac Sci Technol A 6:2390CrossRefGoogle Scholar
  57. 57.
    Zalar A (1985) Thin Solid Films 124:223CrossRefGoogle Scholar
  58. 58.
    Zalar A (1986) Surf Interface Anal 9:41CrossRefGoogle Scholar
  59. 59.
    Sakai Y, Iijima Y, Mori K, Hiraoka K (2008) Surf Interface Anal 40:1716CrossRefGoogle Scholar
  60. 60.
    Nagiub HM, Kelly R (1975) Rad Effects 25:1CrossRefGoogle Scholar
  61. 61.
    Kim KS, Battinger WE, Amy JW, Winograd N (1974) J Electron Spectrosc Relat Phenom 5:351CrossRefGoogle Scholar
  62. 62.
    Hashimoto S, Hirokawa K, Fukuda Y, Suzuki K, Suzuki T, Usuki N, Gennai N, Yoshida S, Koda M, Sezaki H, Horie H, Tanaka A, Ohtsubo T (1992) Surf Interface Anal 18:799CrossRefGoogle Scholar
  63. 63.
    Bardy U, Tamura K, Owari M, Nihei Y (1988) Appl Surf Sci 32:352CrossRefGoogle Scholar
  64. 64.
    Kelly R (1980) Surf Sci 100:85CrossRefGoogle Scholar
  65. 65.
    Hofmann S, Sanz JM (1982–1983) J Trace Microprobe Technol 1:213Google Scholar
  66. 66.
    McCafferty E, Wightman JP (1999) Appl Surf Sci 143:92CrossRefGoogle Scholar
  67. 67.
    Hashimoto S, Tanaka A (2001) J Surf Anal 8:192Google Scholar
  68. 68.
    Asakawa D, Hiraoka K (2009) J Mass Spectrom 44:461CrossRefGoogle Scholar
  69. 69.
    Przybilla L, Brand J-D, Yoshimura K, Räder HJ, Müllen K (2000) Anal Chem 72:4591CrossRefGoogle Scholar
  70. 70.
    Trimpin S, Rouhanipour A, Az R, Räder HJ, Müllen K (2001) Rapid Commun Mass Spectrom 15:1364CrossRefGoogle Scholar
  71. 71.
    Trimpin S, Grimsdale AC, Räder HJ, Müllen K (2002) Anal Chem 74:3777CrossRefGoogle Scholar
  72. 72.
    Hiraoka K, Asakawa D, Takaishi R (2013) doi:1002/siaGoogle Scholar
  73. 73.
    Takaoka G, Nakamura K, Noguchi H, Kawashita M (2006) Surf Interface Anal 38:1534CrossRefGoogle Scholar
  74. 74.
    Rabalais JW, Chen J-N (1986) J Chem Phys 85:3615CrossRefGoogle Scholar
  75. 75.
    Levsen K, Schwarz H (1983) Mass Spectrom Rev 2:77CrossRefGoogle Scholar
  76. 76.
    McLuckey SA (1992) J Am Soc Mass Spectrom 3:599CrossRefGoogle Scholar
  77. 77.
    Asakawa D, Hiraoka K (2012) Surf Interface Anal 44:227CrossRefGoogle Scholar
  78. 78.
    Seki T, Matsuo J (2007) Nucl Instrum Methods Phys Res B 257:666CrossRefGoogle Scholar
  79. 79.
    Toyoda N, Kitani H, Hagiwara N, Aoki T, Matsuo J, Yamada I (1998) Mater Chem Phys 54:262CrossRefGoogle Scholar
  80. 80.
    Ojamäe L, Hermansson K (1994) J Phys Chem 98:4271CrossRefGoogle Scholar
  81. 81.
    Wilson KR, Cavalleri M, Rude BS, Schaller RD, Nilsson A, Pettersson LGM, Goldman N, Catalano T, Bozek JD, Saykally RJ (2002) J Phys Condens Matter 14:L221CrossRefGoogle Scholar
  82. 82.
    Ninomiya S, Chen LC, Suzuki H, Sakai Y, Hiraoka K (2012) Rapid Commun Mass Spectrom 26:863CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Clean Energy Research CenterUniversity of YamanashiKofuJapan

Personalised recommendations