Advertisement

Differentiation and Integration

  • Sergei Ovchinnikov
Chapter
Part of the Universitext book series (UTX)

Abstract

In the first three sections of this chapter, we investigate differentiability properties of functions of bounded variation. We begin by introducing the upper and lower derivatives of a function defined on a closed bounded interval [a, b] in Sect. 4.1, where important properties of these derivatives are established (cf. Lemma 4.1). Functions of bounded variation are introduced and their properties are investigated in Sect. 4.2. The main result (Theorem 4.8) of Sect. 4.3 asserts that a function of a bounded variation on [a, b] is differentiable almost everywhere on this interval.

References

  1. Apo74.
    Apostol, T.M.: Mathematical Analysis, 2nd edn. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. Aus65.
    Austin, D.: A geometric proof of the Lebesgue differentiation theorem. Proc. AMS 16, 220–221 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  3. BS11.
    Bartle, R., Sherbert, D.: Introduction to Real Analysis, 4th edn. Wiley, New York (2011)Google Scholar
  4. Bot03.
    Botsko, M.W.: An elementary proof of Lebesgue’s differentiation theorem. Am. Math. Mon. 110, 834–838 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bou66.
    Bourbaki, N.: General Topology. Addison-Wesley, Reading (1966)Google Scholar
  6. Hal74.
    Halmos, P.: Naive Set Theory. Springer, New York (1974)zbMATHGoogle Scholar
  7. Knu76.
    Knuth, D.E.: Problem E 2613. Am. Math. Mon. 83, 656 (1976)MathSciNetCrossRefGoogle Scholar
  8. Kre78.
    Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)zbMATHGoogle Scholar
  9. Leb28.
    Lebesgue, H.: Leconş sur l’intégration et la recherche des fonctions primitives. Gauthier-Villars, Paris (1928)zbMATHGoogle Scholar
  10. Leb66.
    Lebesgue, H.: Measure and the Integral. Holden-Day, San Francisco (1966)zbMATHGoogle Scholar
  11. Nat55.
    Natanson, I.P.: Theory of Functions of a Real Variable. Frederick Ungar Publishing Co., New York (1955)Google Scholar
  12. RSN90.
    Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover, New York (1990)Google Scholar
  13. Tao09.
    Tao, T.: Analysis I. Hindustan Book Academy, New Delhi, India (2009)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sergei Ovchinnikov
    • 1
  1. 1.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA

Personalised recommendations