Lebesgue Integration

  • Sergei Ovchinnikov
Part of the Universitext book series (UTX)


We define the Lebesgue integral in three stages. First, we define the integral of a bounded function over a measurable set E by following the original Lebesgue’s method.


Measurable Function Nonnegative Function Monotonicity Property Measurable Subset Monotone Convergence Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Apo74.
    Apostol, T.M.: Mathematical Analysis, 2nd edn. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. Aus65.
    Austin, D.: A geometric proof of the Lebesgue differentiation theorem. Proc. AMS 16, 220–221 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  3. BS11.
    Bartle, R., Sherbert, D.: Introduction to Real Analysis, 4th edn. Wiley, New York (2011)Google Scholar
  4. Bot03.
    Botsko, M.W.: An elementary proof of Lebesgue’s differentiation theorem. Am. Math. Mon. 110, 834–838 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bou66.
    Bourbaki, N.: General Topology. Addison-Wesley, Reading (1966)Google Scholar
  6. Hal74.
    Halmos, P.: Naive Set Theory. Springer, New York (1974)zbMATHGoogle Scholar
  7. Knu76.
    Knuth, D.E.: Problem E 2613. Am. Math. Mon. 83, 656 (1976)MathSciNetCrossRefGoogle Scholar
  8. Kre78.
    Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)zbMATHGoogle Scholar
  9. Leb28.
    Lebesgue, H.: Leconş sur l’intégration et la recherche des fonctions primitives. Gauthier-Villars, Paris (1928)zbMATHGoogle Scholar
  10. Leb66.
    Lebesgue, H.: Measure and the Integral. Holden-Day, San Francisco (1966)zbMATHGoogle Scholar
  11. Nat55.
    Natanson, I.P.: Theory of Functions of a Real Variable. Frederick Ungar Publishing Co., New York (1955)Google Scholar
  12. RSN90.
    Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover, New York (1990)Google Scholar
  13. Tao09.
    Tao, T.: Analysis I. Hindustan Book Academy, New Delhi, India (2009)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sergei Ovchinnikov
    • 1
  1. 1.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA

Personalised recommendations