Advertisement

Preliminaries

  • Sergei Ovchinnikov
Chapter
Part of the Universitext book series (UTX)

Abstract

Real analysis is a standard prerequisite for a course on Lebesgue’s theories of measure, integration, and derivative. The goal of this chapter is to bring readers with different backgrounds in real analysis to a common starting point. In no way the material here is a substitute for a systematic course in real analysis. Our intention is to fill the gaps between what some readers may have learned before and what is required to fully understand the material presented in the consequent chapters.

References

  1. Apo74.
    Apostol, T.M.: Mathematical Analysis, 2nd edn. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. Aus65.
    Austin, D.: A geometric proof of the Lebesgue differentiation theorem. Proc. AMS 16, 220–221 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  3. BS11.
    Bartle, R., Sherbert, D.: Introduction to Real Analysis, 4th edn. Wiley, New York (2011)Google Scholar
  4. Bot03.
    Botsko, M.W.: An elementary proof of Lebesgue’s differentiation theorem. Am. Math. Mon. 110, 834–838 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bou66.
    Bourbaki, N.: General Topology. Addison-Wesley, Reading (1966)Google Scholar
  6. Hal74.
    Halmos, P.: Naive Set Theory. Springer, New York (1974)zbMATHGoogle Scholar
  7. Knu76.
    Knuth, D.E.: Problem E 2613. Am. Math. Mon. 83, 656 (1976)MathSciNetCrossRefGoogle Scholar
  8. Kre78.
    Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)zbMATHGoogle Scholar
  9. Leb28.
    Lebesgue, H.: Leconş sur l’intégration et la recherche des fonctions primitives. Gauthier-Villars, Paris (1928)zbMATHGoogle Scholar
  10. Leb66.
    Lebesgue, H.: Measure and the Integral. Holden-Day, San Francisco (1966)zbMATHGoogle Scholar
  11. Nat55.
    Natanson, I.P.: Theory of Functions of a Real Variable. Frederick Ungar Publishing Co., New York (1955)Google Scholar
  12. RSN90.
    Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover, New York (1990)Google Scholar
  13. Tao09.
    Tao, T.: Analysis I. Hindustan Book Academy, New Delhi, India (2009)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sergei Ovchinnikov
    • 1
  1. 1.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA

Personalised recommendations