Skip to main content

Chern–Weil Theory for Certain Infinite-Dimensional Lie Groups

  • Chapter
  • First Online:
Lie Groups: Structure, Actions, and Representations

Part of the book series: Progress in Mathematics ((PM,volume 306))

Abstract

Chern–Weil and Chern–Simons theory extend to certain infinite-rank bundles that appear in mathematical physics. We discuss what is known of the invariant theory of the corresponding infinite-dimensional Lie groups. We use these techniques to detect cohomology classes for spaces of maps between manifolds and for diffeomorphism groups of manifolds.

To Joe Wolf, with great appreciation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, M., van Moerbeke, P., and Vanhaecke, P., Algebraic Integrability, Painlevé Geometry and Lie Algebras, Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, Vol. 47, Springer-Verlag, Berlin, 2004.

    Google Scholar 

  2. Atiyah, M., Circular symmetry and stationary phase approximation, Astérisque 131 (1984), 43–59.

    Google Scholar 

  3. Atiyah, M. and Singer, I. M., The index of elliptic operators. IV., Annals of Math. 93 (1971), 119–138.

    Google Scholar 

  4. Berline, N., Getzler, E., and Vergne, M., Heat Kernels and Dirac Operators, Grundlehren der Mathematischen Wissenschaften 298, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  5. Bismut, J. M., The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Inventiones Math. 83 (1986), 91–151.

    Google Scholar 

  6. Chern, S.-S., Complex Manifolds without Potential Theory, Springer-Verlag, New York, 1979.

    Book  MATH  Google Scholar 

  7. Chern, S.-S. and Simons, J., Characteristic forms and Geometric Invariants, Annals of Math. 99 (1974), no. 1, 48–69.

    Google Scholar 

  8. Chevalley, C. and Eilenberg, S., Cohomology groups of Lie groups and Lie algebras, Trans. AMS 63 (1948), 85–124.

    Google Scholar 

  9. Dieudonné, J., A History of Algebraic and Differential Topology 1900–1960, Birkhäuser, Boston, 1989.

    MATH  Google Scholar 

  10. Dupont, J. L., Curvature and Characteristic Classes, Lect. Notes Math. 640, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  11. Eells, J., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807.

    Google Scholar 

  12. Fedosov, B., Golse, F., Leichtnam, E., and Schrohe, E., The noncommutative residue for manifolds with boundary, J. Funct. Analysis 142 (1996), 1–31.

    Google Scholar 

  13. Freed, D., Geometry of Loop Groups, J. Diff. Geom. 28 (1988), 223–276.

    Google Scholar 

  14. Garland, H., Murray, M. K., Kac-Moody algebras and periodic instantons, Commun. Math. Phys. 120 (1988), 335–351.

    Google Scholar 

  15. Gauntlett, J.P., Martelli, D., Sparks, J., Waldram, D., Sasaki-Einstein metrics on S 2 ×S 3, Adv. Theor. Math. Phys. 8 (2004), 711, hep–th/0403002.

    Google Scholar 

  16. Guest, M., Harmonic Maps, Loop Groups, and Integrable Systems, LMS Student Texts, Vol. 38, Cambridge U. Press, Cambridge, 1997.

    Google Scholar 

  17. Hamilton, R., Nash-Moser implicit function theorems, Bull. Amer. Math. Soc. 7 (1986), 65–222.

    Google Scholar 

  18. Hatcher, A., Algebraic Topology, Cambridge U. Press, Cambridge, UK, 2002, www.math.cornell.edu/~hatcher/AT/ATpage.html.

  19. Husemoller, D., Fibre Bundles, 1st ed., Springer-Verlag, New York, 1966.

    Book  MATH  Google Scholar 

  20. Larrain-Hubach, A., Explicit computations of the symbols of order 0 and -1 of the curvature operator of \(\Omega G\), Letters in Math. Phys. 89 (2009), 265–275.

    Google Scholar 

  21. Larrain-Hubach, A., Paycha, S., Rosenberg, S., and Scott, S., in preparation.

    Google Scholar 

  22. Larrain-Hubach, A., Rosenberg, S., Scott, S., and Torres-Ardila, F., in preparation.

    Google Scholar 

  23. __________ , Characteristic classes and zeroth order pseudodifferential operators, Spectral Theory and Geometric Analysis, Contemporary Mathematics, Vol. 532, AMS, 2011.

    Google Scholar 

  24. Lawson, H. Blaine and Mickelsohn, M., Spin Geometry, Princeton U. Press, Princeton, NJ, 1989.

    Google Scholar 

  25. Lesch, M. and Neira Jimenez, C., Classification of traces and hypertraces on spaces of classical pseudodifferential operators, arXiv:1011.3238.

    Google Scholar 

  26. Lescure, J.-M. and Paycha, S., Uniqueness of multiplicative determinants on elliptic pseudodifferential operators, Proc. London Math. Soc. 94 (2007), 772–812.

    Google Scholar 

  27. Maeda, Y., Rosenberg, S., and Torres-Ardila, F., Riemannian geometry on loop spaces, arXiv:0705.1008.

    Google Scholar 

  28. Milnor, J., Characteristic Classes, Princeton U. Press, Princeton, 1974.

    MATH  Google Scholar 

  29. Misiolek, G., Rosenberg, S., and Torres-Ardila, F., in preparation.

    Google Scholar 

  30. Murray, M. K. and Vozzo, R., The caloron correspondence and higher string classes for loop groups, J. Geom. Phys. 60 (2010), 1235–1250.

    Article  MathSciNet  MATH  Google Scholar 

  31. Omori, H., Infinite-Dimensional Lie Groups, A.M.S., Providence, RI, 1997.

    MATH  Google Scholar 

  32. Paycha, S., Chern-Weil calculus extended to a class of infinite dimensional manifolds, arXiv:0706.2554.

    Google Scholar 

  33. Ponge, R., Traces on pseudodifferential operators and sums of commutators, arXiv:0607.4265.

    Google Scholar 

  34. Pressley, A. and Segal, G., Loop Groups, Oxford University Press, New York, NY, 1988.

    MATH  Google Scholar 

  35. Reyman, A.G. and Semenov-Tian-Shansky, M.A., Integrable Systems II: Group-Theoretical Methods in the Theory of Finite-Dimensional Integrable Systems, Dynamical systems. VII, Encyclopaedia of Mathematical Sciences, Vol. 16, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  36. Rochon, F., Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0, Ann. Inst. Fourier 58 (2008), 29–62.

    Google Scholar 

  37. Rosenberg, S., The Laplacian on a Riemannian Manifold, Cambridge U. Press, Cambridge, UK, 1997.

    Book  MATH  Google Scholar 

  38. Scott, S., Traces and Determinants of Pseudodifferential Operators, Oxford U. Press, Oxford, 2010.

    Book  MATH  Google Scholar 

  39. Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989), 351–399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenberg, S. (2013). Chern–Weil Theory for Certain Infinite-Dimensional Lie Groups. In: Huckleberry, A., Penkov, I., Zuckerman, G. (eds) Lie Groups: Structure, Actions, and Representations. Progress in Mathematics, vol 306. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7193-6_15

Download citation

Publish with us

Policies and ethics