Skip to main content

Poor Quality Ejaculate Sperm: Do the Data Support the Use of Testis Sperm?

  • Chapter
  • First Online:
Biennial Review of Infertility
  • 817 Accesses

Abstract

Quantitative deficiencies in spermatogenesis, aberrations in spermatozoal ultramorphology, or defects in spermatozoal nuclear/DNA health may lead to male factor infertility. Rare situations present themselves when the clinical question of whether to harvest testis sperm, even when ejaculate sperm are available, arises. This chapter will try to provide an answer to this vexing problem by positing several scenarios and looking at the literature that bears on each: (1) Is testis sperm as genetically safe and competent as ejaculated sperm and vice versa when used as the sperm source for intracytoplasmic sperm injection? (2) Is testis sperm the answer when there are gross morphological abnormalities seen in the ejaculate sperm? (3) Is testis sperm the answer when there is extremely limited motility in the ejaculate sperm? (4) Is testis sperm the answer when there is increased DNA fragmentation in the ejaculate sperm or repeated ICSI failure for unknown reasons?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee SH, Song H, Park YS, et al. Poor sperm quality affects clinical outcomes of intracytoplasmic sperm injection in fresh and subsequent frozen-thawed cycles: potential paternal effects on pregnancy outcomes. Fertil Steril. 2009;91(3):798–804.

    Article  PubMed  Google Scholar 

  2. Lu YH, Gao HJ, Li BJ, et al. Different sperm sources and parameters can influence intracytoplasmic sperm injection outcomes before embryo implantation. J Zhejiang Univ Sci B. 2012;13(1):1–10.

    Article  PubMed  Google Scholar 

  3. Naru T, Sulaiman MN, Kidwai A, et al. Intracytoplasmic sperm injection outcome using ejaculated sperm and retrieved sperm in azoospermic men. Urol J. 2008;5(2):106–10.

    PubMed  Google Scholar 

  4. Amirjannati N, Heidari-Vala H, Akhondi MA, et al. Comparison of intracytoplasmic sperm injection outcomes between spermatozoa retrieved from testicular biopsy and from ejaculation in cryptozoospermic men. Andrologia. 2012;44 (Suppl 1):704–9.

    Article  PubMed  Google Scholar 

  5. Bendikson KA, Neri QV, Takeuchi T, et al. The outcome of intracytoplasmic sperm injection using occasional spermatozoa in the ejaculate of men with spermatogenic failure. J Urol. 2008;180(3):1060–4.

    Article  PubMed  Google Scholar 

  6. Tsai CC, Huang FJ, Wang LJ, et al. Clinical outcomes and development of children born after intracytoplasmic sperm injection (ICSI) using extracted testicular sperm or ejaculated extreme severe oligo-astheno-teratozoospermia sperm: a comparative study. Fertil Steril. 2011;96(3):567–71.

    Article  PubMed  Google Scholar 

  7. Fedder J, Loft A, Parner ET, et al. Neonatal outcome and congenital malformations in children born after ICSI with testicular or epididymal sperm: a controlled national cohort study. Hum Reprod. 2013;28(1):230–40.

    Article  PubMed  CAS  Google Scholar 

  8. Fedder J. Personal Communication. In: Oats R, editor.2013.

    Google Scholar 

  9. Belva F, De Schrijver F, Tournaye H, et al. Neonatal outcome of 724 children born after ICSI using non-ejaculated sperm. Hum Reprod. 2011;26(7):1752–8.

    Article  PubMed  CAS  Google Scholar 

  10. Pinborg A, Henningsen AK, Malchau SS, et al. Congenital anomalies after assisted reproductive technology. Fertil Steril. 2013;99:327–32.

    Article  PubMed  Google Scholar 

  11. Belva F, Roelants M, Painter R, et al. Pubertal development in ICSI children. Hum Reprod. 2012;27(4):1156–61.

    Article  PubMed  CAS  Google Scholar 

  12. Woldringh GH, Besselink DE, Tillema AH, et al. Karyotyping, congenital anomalies and follow-up of children after intracytoplasmic sperm injection with non-ejaculated sperm: a systematic review. Hum Reprod Update. 2010;16(1):12–9.

    Article  PubMed  CAS  Google Scholar 

  13. Woldringh GH, Horvers M, Janssen AJ, et al. Follow-up of children born after ICSI with epididymal spermatozoa. Hum Reprod. 2011;26(7):1759–67.

    Article  PubMed  CAS  Google Scholar 

  14. Harnisch B, Oates R. Genetic disorders related to male factor infertility and their adverse consequences. Semin Reprod Med. 2012;30(2):105–15.

    Article  PubMed  CAS  Google Scholar 

  15. Schatten H, Sun QY. New insights into the role of centrosomes in mammalian fertilization and implications for ART. Reproduction. 2011;142(6):793–801.

    Article  PubMed  CAS  Google Scholar 

  16. Chemes HE, Alvarez Sedo C. Tales of the tail and sperm head aches: changing concepts on the prognostic significance of sperm pathologies affecting the head, neck and tail. Asian J Androl. 2012;14(1):14–23.

    Article  PubMed  Google Scholar 

  17. Dam AH, Feenstra I, Westphal JR, et al. Globozoospermia revisited. Hum Reprod Update. 2007;13(1):63–75.

    Article  PubMed  CAS  Google Scholar 

  18. Harbuz R, Zouari R, Pierre V, et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet. 2011;88(3):351–61.

    Article  PubMed  CAS  Google Scholar 

  19. Koscinski I, Elinati E, Fossard C, et al. DPY19L2 deletion as a major cause of globozoospermia. Am J Hum Genet. 2011;88(3):344–50.

    Article  PubMed  CAS  Google Scholar 

  20. Dam AH, Koscinski I, Kremer JA, et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 2007;81(4):813–20.

    Article  PubMed  CAS  Google Scholar 

  21. Liu G, Shi QW, Lu GX. A newly discovered mutation in PICK1 in a human with globozoospermia. Asian J Androl. 2010;12(4):556–60.

    Article  PubMed  Google Scholar 

  22. Moretti E, Geminiani M, Terzuoli G, et al. Two cases of sperm immotility: a mosaic of flagellar alterations related to dysplasia of the fibrous sheath and abnormalities of head-neck attachment. Fertil Steril. 2011;95(5):1787. e19–23.

    Article  PubMed  Google Scholar 

  23. Chemes HE, Rawe VY. The making of abnormal spermatozoa: cellular and molecular mechanisms underlying pathological spermiogenesis. Cell Tissue Res. 2010;341(3):349–57.

    Article  PubMed  Google Scholar 

  24. Molinari E, Mirabelli M, Raimondo S, et al. Sperm macrocephaly syndrome in a patient without AURKC mutations and with a history of recurrent miscarriage. Reprod Biomed Online. 2012;26:148–56.

    Article  PubMed  Google Scholar 

  25. Shimizu Y, Kiumura F, Kaku S, et al. Successful delivery following ICSI with macrocephalic sperm head syndrome: a case report. Reprod Biomed Online. 2012;24(6):603–5.

    Article  PubMed  Google Scholar 

  26. Dieterich K, Soto Rifo R, Faure AK, et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet. 2007;39(5):661–5.

    Article  PubMed  CAS  Google Scholar 

  27. Carbone Jr DJ, Shah A, Thomas Jr AJ, et al. Partial obstruction, not antisperm antibodies, causing infertility after vasovasostomy. J Urol. 1998;159(3):827–30.

    Article  PubMed  CAS  Google Scholar 

  28. Jarow JP, Sigman M, Buch JP, et al. Delayed appearance of sperm after end-to-side vasoepididymostomy. J Urol. 1995;153(4):1156–8.

    Article  PubMed  CAS  Google Scholar 

  29. Chavez-Badiola A, Drakeley AJ, Finney V, et al. Necrospermia, antisperm antibodies, and vasectomy. Fertil Steril. 2008;89(3):723. e5–7.

    Article  PubMed  Google Scholar 

  30. La Vignera S, Calogero AE, Condorelli R, et al. Andrological characterization of the patient with diabetes mellitus. Minerva Endocrinol. 2009;34(1):1–9.

    PubMed  Google Scholar 

  31. La Vignera S, Condorelli R, Vicari E, et al. Diabetes mellitus and sperm parameters. J Androl. 2012;33(2):145–53.

    Article  PubMed  Google Scholar 

  32. La Vignera S, Vicari E, Condorelli R, et al. Ultrasound characterization of the seminal vesicles in infertile patients with type 2 diabetes mellitus. Eur J Radiol. 2011;80(2):e64–7.

    Article  PubMed  Google Scholar 

  33. Roessner C, Paasch U, Kratzsch J, et al. Sperm apoptosis signalling in diabetic men. Reprod Biomed Online. 2012;25(3):292–9.

    Article  PubMed  Google Scholar 

  34. Leigh MW, Pittman JE, Carson JL, et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009;11(7):473–87.

    Article  PubMed  Google Scholar 

  35. Kawakami M, Hattori Y, Nakamura S. Reflection of structural abnormality in the axoneme of respiratory cilia in the clinical features of immotile cilia syndrome. Intern Med. 1996;35(8):617–23.

    Article  PubMed  CAS  Google Scholar 

  36. Chodhari R, Mitchison HM, Meeks M. Cilia, primary ciliary dyskinesia and molecular genetics. Paediatr Respir Rev. 2004;5(1):69–76.

    Article  PubMed  CAS  Google Scholar 

  37. Collodel G, Moretti E. Sperm morphology and aneuploidies: defects of supposed genetic origin. Andrologia. 2006;38(6):208–15.

    Article  PubMed  CAS  Google Scholar 

  38. Moretti E, Collodel G. Three cases of genetic defects affecting sperm tail: a FISH study. J Submicrosc Cytol Pathol. 2006;38(2–3):137–41.

    PubMed  CAS  Google Scholar 

  39. Rives N, Mousset-Simeon N, Mazurier S, et al. Primary flagellar abnormality is associated with an increased rate of spermatozoa aneuploidy. J Androl. 2005;26(1):61–9.

    PubMed  Google Scholar 

  40. Geremek M, Bruinenberg M, Zietkiewicz E, et al. Gene expression studies in cells from primary ciliary dyskinesia patients identify 208 potential ciliary genes. Hum Genet. 2011;129(3):283–93.

    Article  PubMed  CAS  Google Scholar 

  41. Cayan S, Conaghan J, Schriock ED, et al. Birth after intracytoplasmic sperm injection with use of testicular sperm from men with Kartagener/immotile cilia syndrome. Fertil Steril. 2001;76(3):612–4.

    Article  PubMed  CAS  Google Scholar 

  42. Kaushal M, Baxi A. Birth after intracytoplasmic sperm injection with use of testicular sperm from men with Kartagener or immotile cilia syndrome. Fertil Steril. 2007;88(2):497. e9–11.

    Article  PubMed  Google Scholar 

  43. Papadimas J, Tarlatzis BC, Bili H, et al. Therapeutic approach of immotile cilia syndrome by intracytoplasmic sperm injection: a case report. Fertil Steril. 1997;67(3):562–5.

    Article  PubMed  CAS  Google Scholar 

  44. Peeraer K, Nijs M, Raick D, et al. Pregnancy after ICSI with ejaculated immotile spermatozoa from a patient with immotile cilia syndrome: a case report and review of the literature. Reprod Biomed Online. 2004;9(6):659–63.

    Article  PubMed  Google Scholar 

  45. McLachlan RI, Ishikawa T, Osianlis T, et al. Normal live birth after testicular sperm extraction and intracytoplasmic sperm injection in variant primary ciliary dyskinesia with completely immotile sperm and structurally abnormal sperm tails. Fertil Steril. 2012;97(2):313–8.

    Article  PubMed  Google Scholar 

  46. Evenson DP, Jost LK, Marshall D, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49.

    Article  PubMed  CAS  Google Scholar 

  47. Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.

    Article  PubMed  CAS  Google Scholar 

  48. Fernandez JL, Muriel L, Rivero MT, et al. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59–66.

    PubMed  CAS  Google Scholar 

  49. Sun JG, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56(3):602–7.

    Article  PubMed  CAS  Google Scholar 

  50. Tamburrino L, Marchiani S, Montoya M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl. 2012;14(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  51. The clinical utility of sperm DNA integrity testing. Fertil Steril. 2008 Nov;90(5 Suppl):S178–80.

    Google Scholar 

  52. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89(4):823–31.

    Article  PubMed  Google Scholar 

  53. Zini A, Jamal W, Cowan L, et al. Is sperm DNA damage associated with IVF embryo quality? A systematic review. J Assist Reprod Genet. 2011;28(5):391–7.

    Article  PubMed  Google Scholar 

  54. Menezo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010;18(4):357–65.

    Article  PubMed  CAS  Google Scholar 

  55. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

    Article  PubMed  CAS  Google Scholar 

  56. Moskovtsev SI, Jarvi K, Mullen JB, et al. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril. 2010;93(4):1142–6.

    Article  PubMed  CAS  Google Scholar 

  57. Rodrigo L, Rubio C, Peinado V, et al. Testicular sperm from patients with obstructive and nonobstructive azoospermia: aneuploidy risk and reproductive prognosis using testicular sperm from fertile donors as control samples. Fertil Steril. 2011;95(3):1005–12.

    Article  PubMed  Google Scholar 

  58. Moskovtsev SI, Alladin N, Lo KC, et al. A comparison of ejaculated and testicular spermatozoa aneuploidy rates in patients with high sperm DNA damage. Syst Biol Reprod Med. 2012;58(3):142–8.

    Article  PubMed  CAS  Google Scholar 

  59. Smit M, Wissenburg OG, Romijn JC, et al. Increased sperm DNA fragmentation in patients with vasectomy reversal has no prognostic value for pregnancy rate. J Urol. 2010;183(2):662–5.

    Article  PubMed  Google Scholar 

  60. Knez K, Zorn B, Tomazevic T, et al. The IMSI procedure improves poor embryo development in the same infertile couples with poor semen quality: a comparative prospective randomized study. Reprod Biol Endocrinol. 2011;9:123.

    Article  PubMed  Google Scholar 

  61. Weissman A, Horowitz E, Ravhon A, et al. Pregnancies and live births following ICSI with testicular spermatozoa after repeated implantation failure using ejaculated spermatozoa. Reprod Biomed Online. 2008;17(5):605–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Oates M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oates, R.D. (2013). Poor Quality Ejaculate Sperm: Do the Data Support the Use of Testis Sperm?. In: Schlegel, P., Fauser, B., Carrell, D., Racowsky, C. (eds) Biennial Review of Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7187-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7187-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7186-8

  • Online ISBN: 978-1-4614-7187-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics