Advertisement

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

  • Lin Mu
  • Junping Wang
  • Yanqiu Wang
  • Xiu Ye
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 45)

Abstract

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in (Wang et al., Comput. Appl. Math. 241:103–115, 2013) for second-order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions, and, using certain discrete spaces and with stabilization, it works on partitions of arbitrary polygon or polyhedron. In this article, the weak Galerkin method is applied to discretize the Ciarlet–Raviart mixed formulation for the biharmonic equation. In particular, an a priori error estimation is given for the corresponding finite element approximations. The error analysis essentially follows the framework of Babus̆ka, Osborn, and Pitkäranta (Math. Comp. 35:1039–1062, 1980) and uses specially designed mesh-dependent norms. The proof is technically tedious due to the discontinuous nature of the weak Galerkin finite element functions. Some computational results are presented to demonstrate the efficiency of the method.

Keywords

Weak Galerkin finite element methods Discrete gradient Biharmonic equations Mixed finite element methods 

References

  1. 1.
    Adams, R., Fournier, J.: Sobolev Spaces. Academic press, New York (2003)MATHGoogle Scholar
  2. 2.
    Adini, A., Glough, R.W.: Analysis of plate bending by the finite element method. NSF report G, 7337 (1961)Google Scholar
  3. 3.
    Arnold, D.N., Scott, L.R., Vogelius, M.: Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15(4), 169–192 (1988)MathSciNetMATHGoogle Scholar
  4. 4.
    Babus̆ka, I.: The finite element method with Lagrange multipliers. Numer. Math. 20, 179–192 (1973)Google Scholar
  5. 5.
    Babus̆ka, I., Osborn, J., Pitk aranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comp. 35, 1039–1062 (1980)Google Scholar
  6. 6.
    Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49, 789–817 (2011)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Blum, H., Rannacher, R., Leis, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Brenner, S.C., Sung, L.-Y.: C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)Google Scholar
  9. 9.
    Brezzi, F.: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers. RAIRO 8, 129–151 (1974)MathSciNetMATHGoogle Scholar
  10. 10.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Elements. Springer, New York (1991)CrossRefGoogle Scholar
  11. 11.
    Ciarlet, P., Raviart, P.: A mixed finite element for the biharmonic equation. In: de Boor, C. (ed.) Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–143. Academic Press, New York (1974)Google Scholar
  12. 12.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, New York (1978)MATHGoogle Scholar
  13. 13.
    Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40, 141–187 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Falk, R.S., Osborn, J.E.: Error estimates for mixed methods. RAIRO. Numer. Anal. 14, 249–277 (1980)MathSciNetMATHGoogle Scholar
  16. 16.
    Fraeijs de Veubeke, B.X.: Displacement and equilibrium models in the finite element method. In: Zienkiewicz, O.C., Holister, G. (eds.) “Stress Analysis”. Wiley, New York (1965)Google Scholar
  17. 17.
    Fraeijs de Veubeke, B.X.: Stress function approach. In: International Congress on the Finite Element Methods in Structural Mechanics, Bournemouth, 1975Google Scholar
  18. 18.
    Gastaldi, L., Nochetto, R.H.: Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. M2AN 23, 103–128 (1989)Google Scholar
  19. 19.
    Glowinski, R., Pironneau, O.: Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21, 167–212 (1979)Google Scholar
  20. 20.
    Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37, 139–161 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Herrmann, L.: A bending analysis for plates. In: Matrix Methods in Structural Mechanics, On Proceedings of the Conference held at Wright-Patterson Air Force Base, Ohio, AFFDL technical report No. AFFDL-TR-66-88 pp. 577–604 (1965)Google Scholar
  22. 22.
    Herrmann, L.: Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE EM5 93, 49–83 (1967)Google Scholar
  23. 23.
    Johnson, C.: On the convergence of a mixed finite element method for plate bending problems. Numer. Math. 21, 43–62 (1973)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Johnson, C., Pitkäranta, J.: Analysis of some mixed finite element methods related to reduced integration. Math. Comp. 38, 375–400 (1982)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numer. R-1, 9–53 (1985)Google Scholar
  26. 26.
    Malkus, D.S., Hughes, T.J.R.: Mixed finite element methods-reduced and selective integration techniques: A unification of concepts. Comput. Methods Appl. Mech. Eng. 15, 63–81 (1978)MATHCrossRefGoogle Scholar
  27. 27.
    Miyoshi, T.: A finite element method for the solution of fourth order partial differential equations. Kunamoto J. Sci. (Math.) 9, 87–116 (1973)Google Scholar
  28. 28.
    Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Q. 19, 149–169 (1968)Google Scholar
  29. 29.
    Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. arXiv:1204.3655v2Google Scholar
  30. 30.
    Mu, L., Wang, J., Wang, Y., Ye, X.: A computational study of the weak Galerkin method for second order elliptic equations. Numer. Algorithm (2012). arXiv:1111.0618v1, DOI:10.1007/s11075-012-9651-1Google Scholar
  31. 31.
    Raviart, P., Thomas, J.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Element Method. Lectures Notes in Math. vol. 606. Springer, New York (1977)Google Scholar
  32. 32.
    Scholz, R.: A mixed method for 4th order problems using linear finite elements. R.A.I.R.O. Numer. Anal. 12, 85–90 (1978)Google Scholar
  33. 33.
    Scholz, R.: Interior error estimates for a mixed finite element method. Numer. Funct. Anal. Optim. 1, 415–429 (1979)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Wang, J.: Asymptotic expansions and maximum norm error estimates for mixed finite element methods for second order elliptic problems. Numer. Math. 55, 401–430 (1989)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems, arXiv:1104.2897v1 [math.NA]. J. Comput. Appl. Math. 241, 103-115 (2013)Google Scholar
  36. 36.
    Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems, arXiv:1202.3655v1, submitted to Math Comp.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LancingUSA
  2. 2.Division of Mathematical SciencesNational Science FoundationArlingtonUSA
  3. 3.Department of MathematicsOklahoma State UniversityStillwaterUSA
  4. 4.Department of MathematicsUniversity of Arkansas at Little RockLittle RockUSA

Personalised recommendations