Materials for Capacitance-Based Gas Sensors

  • Ghenadii Korotcenkov
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Capacitance-type sensors form a large percentage of existing sensor types used in both research and industry, as they offer significant advantages in terms of simplicity of fabrication, sensitivity, and low-power operation. This chapter explains the operation of these devices and analyzes the materials such as polymers, metal oxides, porous silicon, CNTs, etc., which are used to make them. The chapter includes 7 figures, 2 tables, and 82 references.

Keywords

Sulfide Carbide Zeolite Toluene Hydrocarbon 

References

  1. Alberti K, Haas J, Plog C, Fetting F (1991) Zeolite coated interdigital capacitors as a new type of gas sensor. Catal Today 8:509–513CrossRefGoogle Scholar
  2. Amírola J, Rodríguez A, Castañer L, Santos JP, Gutiérrez J, Horrillo MC (2005) Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out. Sens Actuators B 111–112:247–253CrossRefGoogle Scholar
  3. Balkus KJ, Ball LJ, Gnade BE, Anthony JM (1997) A capacitance type chemical sensor based on AlPO4-5 molecular sieves. Chem Mater 9:380–386CrossRefGoogle Scholar
  4. Boltshauser T, Baltes H (1991) Capacitive humidity sensors in SACMOS technology with moisture absorbing photosensitive polyimide. Sens Actuators A 26:509–512CrossRefGoogle Scholar
  5. Boltshauser T, Chandran L, Baltes H, Bose F, Steiner D (1991) Humidity sensing properties and electrical permittivity of new photosensitive polyimides. Sens Actuators B 5:161–164CrossRefGoogle Scholar
  6. Boucher EA (1976) Review porous materials: structure, properties and capillary phenomena. J Mater Sci 11:1734–1750CrossRefGoogle Scholar
  7. Brahim S, Colbern S, Gump R, Grigorian L (2008) Tailoring gas sensing properties of carbon nanotubes. J Appl Phys 104:024502CrossRefGoogle Scholar
  8. Britton CL Jr, Jones RL, Oden PI, Hu Z, Warmack RJ, Smith SF, Bryan WL, Rochelle JM (2000) Multiple-input microcantilever sensors. Ultramicroscopy 82:17–21CrossRefGoogle Scholar
  9. Casalini R, Kilitziraki M, Wood D, Petty MC (1999) Sensitivity of the electrical admittance of a polysiloxane film to organic vapors. Sens Actuators B 56:37–44CrossRefGoogle Scholar
  10. Chandran L, Baltes H, Korvink J (1991) Three-dimensional modeling of capacitive humidity sensors. Sens Actuators A 25:243–247Google Scholar
  11. Chatzandroulis S, Tserepi A, Goustouridis D, Normand P, Tsoukalas D (2002) Fabrication of single crystal Si cantilevers using a dry release process and application in a capacitive-type humidity sensor. Microelectron Eng 61–62:955–961CrossRefGoogle Scholar
  12. Chatzandroulis S, Tegou E, Goustouridis D, Polymenakos S, Tsoukalas D (2004) Capacitive-type chemical sensors using thin silicon-polymer bimorph membranes. Sens Actuators B 103:392–396CrossRefGoogle Scholar
  13. Chatzandroulis S, Tsouti V, Raptis I, Goustouridis D (2011) Capacitance-type chemical sensors. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 4, Solid state sensors. Momentum Press, New York, pp 229–260Google Scholar
  14. Chen W-P, Zhao Z-G, Liu X-W, Zhang Z-X, Suo C-G (2009a) A capacitive humidity sensor based on multi-wall carbon nanotubes (MWCNTs). Sensors 9:7431–7444CrossRefGoogle Scholar
  15. Chen Y, Meng F, Li M, Liu J (2009b) Novel capacitive sensor: fabrication from carbon nanotube arrays and sensing property characterization. Sens Actuators B 140:396–401CrossRefGoogle Scholar
  16. Connolly EJ, Timmer B, Pham HTM, Groeneweg J, Sarro PM, Olthuis W, French PJ (2005) A porous SiC ammonia sensor. Sens Actuators B 109:44–46CrossRefGoogle Scholar
  17. Cornila C, Hierlemann A, Lenggenhager R, Malcovati P, Baltes, Hierlemann H, Noetzel G, Weimar U, Göpel W (1995) Capacitive sensors in CMOS technology with polymer coating. Sens Actuators B 25–27:357–361CrossRefGoogle Scholar
  18. Dai C-L (2007) A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique. Sens Actuators B 122:375–380CrossRefGoogle Scholar
  19. Delapierre G, Grange H, Chambaz B, Destannes L (1983) Polymer based capacitive humidity sensor—characteristics and experimental results. Sens Actuators A 4:97–104CrossRefGoogle Scholar
  20. Domansky K, Liu J, Wang LQ, Engelhard MH, Baskaran S (2001) Chemical sensors based on dielectric response of functionalized mesoporous silica films. J Mater Res 16:2810–2816CrossRefGoogle Scholar
  21. Endres HE, Drost S (1991) Optimization of the geometry of gas sensitive interdigital capacitors. Sens Actuators B 4:95–98CrossRefGoogle Scholar
  22. Endres HE, Hartinger R, Schwaiger M, Gmelch G, Roth M (1999) A capacitive CO sensor system with suppression of the humidity interference. Sens Actuators B 57(1–3):83–87CrossRefGoogle Scholar
  23. Erdamar O, Bilen B, Skarlatos Y, Aktas G, Inci MN (2007) Effects of humidity and acetone on the optical and electrical properties of porous silicon nanostructures. Physica Status Solidi C 4:601–603CrossRefGoogle Scholar
  24. Fürjes P, Kovács A, Dücso Cs, Ádám M, Müller B, Mescheder U (2003) Porous silicon-based humidity sensor with interdigital electrodes and internal heaters. Sens Actuators B 95:140–144CrossRefGoogle Scholar
  25. Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108:522–542CrossRefGoogle Scholar
  26. Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296CrossRefGoogle Scholar
  27. Igreja R, Dias CJ (2006) Dielectric response of interdigital chemocapacitors: the role of the sensitive layer thickness. Sens Actuators B 115:69–78CrossRefGoogle Scholar
  28. Ishihara T, Matsubara S (1998) Capacitive type gas sensors. J Electroceram 2(4):215–228CrossRefGoogle Scholar
  29. Ishihara T, Takita Y (1996) Property and catalysis of aluminophosphate-based molecular sieves. In: Spivey JJ (ed) Catalysis, vol 12. Royal Society of Chemistry, Great Britain, pp 21–51CrossRefGoogle Scholar
  30. Ishihara T, Kometani K, Hashida M, Takita Y (1990) Mixed oxide capacitor of BaTiO3-PbO as a new type CO2 gas sensor. Chem Lett 1990:2033–2036Google Scholar
  31. Ishihara T, Kometani K, Hashida M, Takita Y (1991a) Application of mixed oxide capacitor to the selective carbon dioxide sensor. J Electrochem Soc 138:173–176CrossRefGoogle Scholar
  32. Ishihara T, Kometani K, Mizuhara Y, Takita Y (1991b) Mixed oxide capacitor of CuO–BaSnO3 as a sensor for CO2 detection over a wide range of concentration. Chem Lett 1991:1711CrossRefGoogle Scholar
  33. Ishihara T, Kometani K, Mizuhara Y, Takita Y (1992a) Application of a mixed oxide capacitor to the selective carbon dioxide sensor. J Electrochem Soc 139:2881–2885CrossRefGoogle Scholar
  34. Ishihara T, Kometani K, Mizuhara Y, Takita Y (1992b) Mixed oxide capacitor of CuO—BaTiO3 as a new type CO2 gas sensor. J Am Ceram Soc 75:613–618CrossRefGoogle Scholar
  35. Ishihara T, Sato S, Takita Y (1995a) Capacitive-type sensors for the selective detection of nitrogen oxides. Sens Actuators B 24–25:392–395CrossRefGoogle Scholar
  36. Ishihara T, Kometani K, Nishi Y, Takita Y (1995b) Improved sensitivity of CuO-BaTiO3 capacitive-type CO2 sensor by additives. Sens Actuators B 28:49–54CrossRefGoogle Scholar
  37. Ishihara T, Sato S, Fukushima T, Takita Y (1996) Capacitive gas sensor of mixed oxide CoO-In2O3 to selectively detect nitrogen monoxide. J Electrochem Soc 143:1908–1914CrossRefGoogle Scholar
  38. James D, Scott SM, Ali Z, O’Hare WT (2005) Chemical sensors for electronic nose systems. Microchim Acta 149:1–17CrossRefGoogle Scholar
  39. Josse F, Lukas R, Zhou RN, Schneider S, Everhart D (1996) AC impedance-based chemical sensors for organic solvent vapors. Sens Actuators B 36:363–369CrossRefGoogle Scholar
  40. Kang WP, Kim CK (1993) Gas sensitivities of silicon MIS capacitors incorporated with catalyst and adsorptive oxide layers. J Electrochem Soc 140:L125–L127CrossRefGoogle Scholar
  41. Kang U, Wise K (2000) A high speed capacitive humidity sensor with on-chip thermal reset. IEEE Trans Electron Devices 47(4):702–710CrossRefGoogle Scholar
  42. Kim S-J, Jeon BH, Choi K-S, Min N-K (2000) Capacitive porous silicon sensors for measurement of low alcohol gas concentration at room temperature. Solid State Electrochem 4:363–366CrossRefGoogle Scholar
  43. Kitsara M, Goustouridis D, Chatzandroulis S, Beltsios K, Raptis I (2006) A lithographic polymer process sequence for chemical sensing arrays. Microelectron Eng 83:1192–1196CrossRefGoogle Scholar
  44. Korotcenkov G, Cho BK (2010) Porous semiconductors: advanced material for gas sensor applications. Crit Rev Solid State Mater Sci 35(1):1–37CrossRefGoogle Scholar
  45. Kummer AM, Hierlemann A, Baltes H (2004) Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal Chem 76:2470–2477CrossRefGoogle Scholar
  46. Kummer AM, Burg TP, Hierlemann A (2006) Transient signal analysis using complementary metal oxide semiconductor capacitive chemical microsensors. Anal Chem 78:279–290CrossRefGoogle Scholar
  47. Lang HP, Hegner M, Gerber C (2005) Cantilever array sensors. Mater Today 8:30–36CrossRefGoogle Scholar
  48. Laville C, Pellet C (2002) Comparison of three humidity sensors for a pulmonary function diagnosis microsystem. IEEE Sensors J 2(2):96–101CrossRefGoogle Scholar
  49. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253CrossRefGoogle Scholar
  50. Lee C-Y, Wu G-W, Hsieh W-J (2008) Fabrication of micro sensors on a flexible substrate. Sens Actuators A 147:173–176CrossRefGoogle Scholar
  51. Li Y, Vancura C, Barrettino D, Graf M, Hagleitner C, Kummer A, Zimmermann M, Kirstein K-U, Hierlemann A (2007) Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes. Sens Actuators B 126:431–440CrossRefGoogle Scholar
  52. Lim SH, Jaworski J, Satyanarayana S, Wang F, Raorane D, Lee S-W, Majumdar A (2007) Nanomechanical chemical sensor platform. In: Proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems, Bangkok, Thailand, 16–19 Jan 2007, pp 886–889Google Scholar
  53. Lin J, Miiller S, Obermeier E (1991) Two-dimensional and three-dimensional as basic elements for chemical sensors interdigital capacitors. Sens Actuators B 5:223–226CrossRefGoogle Scholar
  54. Lloyd Spetz A, Savage S (2003) Advances in FET chemical gas sensors. In: Choyke WJ, Matsunami H, Pensl G (eds) Recent major advances in SiC. Springer, Berlin, pp 879–906Google Scholar
  55. Lofdahl M, Utaimasin C, Carlsson A, Lundstrom I, Eriksson M (2001) Gas response dependence on gate metal morphology of field-effect devices. Sens Actuators B 80:183–192CrossRefGoogle Scholar
  56. Lundstrom I (1981) Hydrogen sensitive MOS structures. Part 1. Principles and applications. Sens Actuators 1:403–426CrossRefGoogle Scholar
  57. McCorkle DL, Warmack RJ, Patel SV, Mlsna T, Hunter SR, Ferrell TL (2005) Ethanol vapor detection in aqueous environments using micro-capacitors and dielectric polymers. Sens Actuators B 107:892–903CrossRefGoogle Scholar
  58. Meanna Perez JM, Freyre C (1997) A poly(ethylene terephthalate)-based humidity sensor. Sens Actuators B 42:27–30CrossRefGoogle Scholar
  59. Menil F, Lucat C, Debeda H (1995) The thick-film route to selective gas sensors. Sens Actuators B 24–25:415–420CrossRefGoogle Scholar
  60. Mlsna TE, Cemalovic S, Warburton M, Hobson ST, Mlsna DA, Patel SV (2006) Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sens Actuators B 116:192–201CrossRefGoogle Scholar
  61. Nahar RK, Khanna VK (1982) A study of capacitance and resistance characteristics of an Al2O3 humidity sensor. Int J Electron 52:557–567CrossRefGoogle Scholar
  62. Neimark AV, Ravikovitch PI (2001) Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater 44–45:697–707CrossRefGoogle Scholar
  63. Nordström M, Keller S, Lillemose M, Johansson A, Dohn S, Haefliger D, Blagoi G, Havsteen-Jakobsen M, Boisen A (2008) SU-8 cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods. Sensors 8:1595–1612CrossRefGoogle Scholar
  64. Oprea A, Bârsan N, Weimar U, Bauersfeld ML, Ebling D, Wöllenstein J (2008) Capacitive humidity sensors on flexible RFID labels. Sens Actuators B 132:404–410CrossRefGoogle Scholar
  65. Park S, Kang J, Park J, Mun S (2001) One-bodied humidity and temperature sensor having advanced linearity at low and high relative humidity range. Sens Actuators B 76:322–326CrossRefGoogle Scholar
  66. Park KK, Lee HJ, Yaralioglu GG, Ergun AS, Oralkan Ö, Kupnic M, Quate CF, Khuri-Yakub BT, Braun T, Ramseyer J-P, Lang HP, Hegner M, Gerber C, Gimzewski JK (2007) Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen. Appl Phys Lett 91:094102CrossRefGoogle Scholar
  67. Park KK, Lee HJ, Kupnic M, Oralkan Ö, Khuri-Yakub BT (2008) Capacitive micromachined ultrasonic transducer as a chemical sensor. In: Proceedings of the 7th IEEE conference on sensors, IEEE sensors, Lecce, Italy, 26–29 Oct 2008, pp 5–8Google Scholar
  68. Patel SV, Mlsna TE, Fruhberger B, Klaassen E, Cemalovic S, Baselt DR (2003) Chemicapacitive microsensors for volatile organic compound detection. Sens Actuators B 96:541–553CrossRefGoogle Scholar
  69. Pecora A, Maiolo L, Cuscunà M, Simeone D, Minotti A, Mariucci L, Fortunato G (2008) Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid State Electron 52:348–352CrossRefGoogle Scholar
  70. Rittersma ZM, Splinter A, Bödecker A, Benecke W (2000) A novel surface-micromachined capacitive porous silicon humidity sensor. Sens Actuators B 68:210–217CrossRefGoogle Scholar
  71. Rodríguez A, Amírola J, Millán M, Horrillo MC, Sayago I, García M, Gutiérrez FJ (2004) Electromechanically coupled feedback loops for microsystems. Application to volatile organic compounds (VOC) sensors. In: Proceedings of the 3rd IEEE conference on sensors, IEEE sensors, vol 1. Vienna, Austria, 24–27 Oct 2004, pp 154–157Google Scholar
  72. Salomonsson A, Roy S, Aulin C, Ojamae L, Kall PO, Strand M, Sanati M, Lloyd Spetz A (2005) RuO2 and Ru nanoparticles for MISiC-FET gas sensors. In: Proceedings of MSTI-Nanotech-2005 conference, vol 2, pp 269–272. http://www.nsti.org
  73. Satyanarayana S, McCormick DT, Majumdar A (2006) Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens Actuators B 115:494–502CrossRefGoogle Scholar
  74. Schoeneberg U, Hosticka BJ, Zimmer G, Maclay GJ (1990) A novel readout technique for capacitive gas sensors. Sens Actuators B 1:58–61CrossRefGoogle Scholar
  75. Sheppard NF, Day DR, Lee HL, Senturia SD (1982) Microdielectrometry. Sens Actuators A 2:263–274CrossRefGoogle Scholar
  76. Shibata H, Ito M, Asakursa M, Watanabe K (1996) A digital hygrometer using a polyimide film relative humidity sensor. IEEE Trans Instrum Meas 45(3):564–569CrossRefGoogle Scholar
  77. Silverthorne SV, Watson CW, Baxtor RD (1989) Characterization of a humidity sensor that incorporates a CMOS capacitance measuring circuit. Sens Actuators 19:371–383CrossRefGoogle Scholar
  78. Sivaramakrishnan S, Rajamani R, Pappenfus TM (2008) Electrically stretched capacitive membranes for stiffness sensing and analyte concentration measurement. Sens Actuators B 135:262–267CrossRefGoogle Scholar
  79. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307:1942–1944CrossRefGoogle Scholar
  80. Timar-Horvath V, Juhasz L, Vass-Varnai A, Perlaky G (2008) Usage of porous Al2O3 layers for RH sensing. Microsyst Technol 14:1081–1086CrossRefGoogle Scholar
  81. Winquist F, Spetz A, Armgarth M, Lundstrom I (1985) Biosensors based on ammonia sensitive metal-oxide-semiconductor structures. Sens Actuators 8:91–100CrossRefGoogle Scholar
  82. Zamani C, Shimanoe K, Yamazoe N (2005) A new capacitive-type NO2 gas sensor combining an MIS with a solid electrolyte. Sens Actuators B 109:216–220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Ghenadii Korotcenkov
    • 1
  1. 1.Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuKorea, Republic of (South Korea)

Personalised recommendations