Skip to main content

Filters in Gas Sensors

  • Chapter
  • First Online:
  • 4990 Accesses

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

The incorporation of a variety of additional physical/passive and catalytically active/chemical filters into the measuring unit or directly into the sensor construction is one of the most effective methods for improving both sensor selectivity and sensor resistivity to poisoning. The present chapter describes the materials used for fabrication of these filters and analyzes their advantages and disadvantages. Sorbents for gas preconcentrators are also discussed. It was found that preconcentration is the most effective method for improving sensor selectivity and detection limits for certain analytes, preconcentration being one of the methods used for gas sampling. The chapter includes 4 figures, 3 tables, and 54 references.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74:2781–2800

    Article  CAS  Google Scholar 

  • Billi E, Viricelle J-P, Montanaro L, Pijolat C (2002) Development of a protected gas sensor for exhaust automotive applications. IEEE Sensor J 2(4):342–348

    Article  CAS  Google Scholar 

  • Cabot A, Arbiol J, Cornet A, Morante JR, Chen F, Liu M (2003) Mesoporous catalytic filters for semiconductor gas sensors. Thin Solid Films 436:64–69

    Article  CAS  Google Scholar 

  • Camara EHM, Breuil P, Briand D, Guillot L, Pijolat C, de Rooij NF (2010) Micro gas preconcentrator in porous silicon filled with a carbon absorbent. Sens Actuators B 148:610–619

    Article  CAS  Google Scholar 

  • De Angelis L, Riva R (1995) Selectivity and stability of a tin dioxide sensor for methane. Sens Actuators B 28:25–29

    Article  Google Scholar 

  • Dhandapani B, Oyama ST (1997) Gas phase ozone decomposition catalysts. Appl Catal 11:129–166

    Article  CAS  Google Scholar 

  • Dougami N, Takada T (2003) Modification of metal oxide semiconductor gas sensor by electrophoretic deposition. Sens Actuators B 93:316–320

    Article  CAS  Google Scholar 

  • Dutronc P, Lucat C, Menil F, Loesch M, Horillo MC, Sayago I, Gutierrez J, De Agapito JA (1993a) A potentially selective methane sensor based on the differential conductivity responses of Pd and Pt-doped tin oxide thick layers. Sens Actuators B 15–16:384–389

    Article  Google Scholar 

  • Dutronc P, Lucat C, Menil F, Loesch M, Combes L (1993b) A new approach to selectivity in methane sensing. Sens Actuators B 15–16:24–31

    Article  Google Scholar 

  • Feng CD, Shimizu Y, Egashira M (1994) Effect of gas diffusion process on sensing properties of SnO2 thin film sensors in a SiO2/SnO2 layer-built structure fabricated by sol–gel process. J Electrochem Soc 141:220–225

    Article  CAS  Google Scholar 

  • Fleischer M, Kornely S, Weh T, Frank J, Meixher H (2000) Selective gas detection with high-temperature operated metal oxides using catalytic filters. Sens Actuators B 69:205–210

    Article  CAS  Google Scholar 

  • Flingelli G, Fleischer M, Meixner H (1998) Selective detection of methane in domestic environments using a catalyst sensor system based on Ga2O3. Sens Actuators B 48:258–262

    Article  CAS  Google Scholar 

  • Frietsch M, Zudock F, Goschnick J, Bruns M (2000) CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors. Sens Actuators B 65:379–381

    Article  CAS  Google Scholar 

  • Goldberg HD, Brown RB, Liu DP, Meyerhoff ME (1994) Screen printing: a technology for the batch fabrication of integrated chemical-sensor arrays. Sens Actuators B 21:171–183

    Article  CAS  Google Scholar 

  • Helmig D (1997) Ozone removal techniques in the sampling of atmospheric volatile organic trace gases. Atmos Environ 31:3635–3651

    Article  CAS  Google Scholar 

  • Hierlemann A, Baltes H (2002) CMOS-based chemical microsensors. Analyst 128:15–28

    Article  Google Scholar 

  • Hu J, Zhu F, Zhang J, Gong H (2003) A room temperature indium tin oxide/quartz crystal microbalance gas sensor for nitric oxide. Sens Actuators B 93:175–180

    Article  CAS  Google Scholar 

  • Hubalek J, Malysz K, Prasek J, Vilanova X, Ivanov P, Llobet E, Brezmes J, Correig X, Sverak Z (2004) Pt-loaded Al2O3 catalytic filters for screen-printed WO3 sensors highly selective to benzene. Sens Actuators B 101:277–283

    Article  CAS  Google Scholar 

  • Janata J (1989) Principle of chemical sensors. Plenum, New York

    Book  Google Scholar 

  • Katsuki A, Fukui K (1998) H2 selective gas sensor based on SnO2. Sens Actuators B 52:30–37

    Article  CAS  Google Scholar 

  • Kitsukawa S, Nakagawa H, Fukuda K, Asakura S, Takahashi S, Shigemori T (2000) The interference elimination for gas sensor by catalyst filters. Sens Actuators B 65(1):120–121

    Article  CAS  Google Scholar 

  • Knaebel KS (2004) Adsorbent selection. Adsorption Research Inc. http://www.adsorption.com/publications/AdsorbentSel1B.pdf

  • Korotcenkov G (2007) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B 121:664–678

    Article  CAS  Google Scholar 

  • Korotcenkov G, Tolstoy V, Schwank J (2006) Successive ionic layer deposition (SILD) as a new sensor technology: synthesis and modification of metal oxides. Meas Sci Technol 17:1861–1869

    Article  CAS  Google Scholar 

  • Krol S, Zabiegata B, Namiesnik J (2010a) Monitoring VOCs in atmospheric air. I. On-line gas analyzers. Trends Anal Chem 29(9):1092–1100

    Article  CAS  Google Scholar 

  • Krol S, Zabiegata B, Namiesnik J (2010b) Monitoring VOCs in atmospheric air. II. Sample collection and preparation. Trends Anal Chem 29(9):1101–1112

    Article  CAS  Google Scholar 

  • Mandayo GC, Castano E, Gracia FJ, Cirera A, Cornet A, Morante JR (2002) Built-in active filter for an improved response to carbon monoxide combining thin and thick-film technologies. Sens Actuators B 87:88–94

    Article  CAS  Google Scholar 

  • McGeehin P (1996) Self-diagnostic gas sensors which differentiate carbon monoxide from interference gases for residential applications. Sensor Rev 16:37–39

    Article  Google Scholar 

  • Menil F, Lucat C, Debich A (1994) The thick-film route to selective gas sensors. Sens Actuators B 25:415–420

    Article  Google Scholar 

  • Miller JB (2001) Catalytic sensors for monitoring explosive atmospheres. IEEE Sensors J 1(1):88–93

    Article  CAS  Google Scholar 

  • Park J-H, Yang RT (2005) Simple criterion for adsorbent selection for gas purification by pressure swing adsorption processes. Ind Eng Chem Res 44:1914–1921

    Article  CAS  Google Scholar 

  • Pierce TC, Schiffma SS, Nagle HT, Gardner JW (eds) (2003) Handbook of machine olfaction: electronic nose technology. Wiley-VCH, Weinheim

    Google Scholar 

  • Pijolat C, Pupier C, Sauvan M, Tournier G, Lalauze R (1999) Gas detection for automotive pollution control. Sens Actuators B 59:195–202

    Article  CAS  Google Scholar 

  • Pijolat C, Riviere B, Kamionka M, Viricelle JP, Breuil P (2003) Tin dioxide gas sensor as a tool for atmospheric pollution monitoring: problems and possibilities for improvements. J Mater Sci 38:4333–4346

    Article  CAS  Google Scholar 

  • Pijolat C, Viricelle JP, Tournier G, Montment P (2005) Application of membranes and filtering films for gas sensors improvements. Thin Solid Films 490:7–16

    Article  CAS  Google Scholar 

  • Prasad RM, Gurlo A, Riedel R, Hübner M, Barsan N, Weimar U (2010) Microporous ceramic coated SnO2 sensors for hydrogen and carbon monoxide sensing in harsh reducing conditions. Sens Actuators B 149:105–109

    Article  CAS  Google Scholar 

  • Ryzhikov A, Labeau M, Gaskov A (2009) Selectivity improvement of semiconductor gas sensors by filters. In: Baraton M-I (ed) Sensors for environment, health and security, NATO science for peace and security series C: environmental security. Springer, Dordrecht, pp 141–157

    Chapter  Google Scholar 

  • Sauvan M, Pijolat C (1999) Selectivity improvement of SnO2 films by superficial metallic films. Sens Actuators B 58:295–301

    Article  CAS  Google Scholar 

  • Sberveglieri G (1992) Classical and novel techniques for the preparation of SnO2 thin-film gas sensors. Sens Actuators B 6:239–247

    Article  CAS  Google Scholar 

  • Schweizer-Berberich M, Strathmann S, Gopel W, Sharma R, Peyre-Lavigne A (2000) Filters for tin dioxide CO gas sensors to pass the UL2034 standard. Sens Actuators B 66:34–36

    Article  CAS  Google Scholar 

  • Shen CY, Huang CP, Huang WT (2004) Gas-detecting properties of surface acoustic wave ammonia sensors. Sens Actuators B 101:1–7

    Article  CAS  Google Scholar 

  • Simon I, Bârsan N, Bauer M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B 73:1–26

    Article  CAS  Google Scholar 

  • Tolstoy V, Han SD, Korotcenkov G (2009) Successive ionic layer deposition (SILD): advanced method for deposition and modification of functional nanostructured metal oxides aimed for gas sensor applications. In: Umar A, Hahn YB (eds) Metal oxide nanostructures and their applications, vol 3. American scientific, Stevenson Ranch, CA, pp 1–58

    Google Scholar 

  • Viricelle J, Pauly A, Mazet L, Brunet J, Bouvet M, Varenne C, Pijolat C (2006) Selectivity improvement of semi-conducting gas sensors by selective filter for atmospheric pollutants detection. Mater Sci Eng C 26:186–195

    Article  CAS  Google Scholar 

  • Vlachos DS, Scafidas PD, Avaritsiotis JN (1995) The effect of humidity on tin-oxide thick-film gas sensors in the presence of reducing and combustible gases. Sens Actuators B 25:491–494

    Article  CAS  Google Scholar 

  • Voiculescu I, Zaghloul M, Narasimhan N (2008) Microfabricated chemical preconcentrators for gas-phase microanalytical detection systems. Trends Anal Chem 27:327–342

    Article  CAS  Google Scholar 

  • Wollenstein J, Bottner H, Jaegle M, Becker WJ, Wagner E (2000) Material properties and the influence of metallic catalysts at the surface of highly dense SnO2 films. Sens Actuators B 70:196–202

    Article  CAS  Google Scholar 

  • Wong KKL, Tang Z, Sin JKO, Chan PCH, Cheung PW, Hiraoka H (1996) Sensing mechanism of polymer for selectivity enhancement of gas sensors. In: Proceedings of IEEE international conference on semiconductor electronics, ICSE’96, Penang, 26–28 Nov 1996, pp 217–220

    Google Scholar 

  • Wurzinger O, Reinhardt G (2004) CO-sensing properties of doped SnO2 sensors in H2-rich gases. Sens Actuators B 103:104–110

    Article  CAS  Google Scholar 

  • Yang RT (1997) Gas separation by adsorption processes. Imperial College Press, London

    Book  Google Scholar 

  • Yang RT (2003) Adsorbents: fundamentals and applications. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  • Zhan ZL, Jiang DG, Xu JQ (2004) Enhancement of H2 sensing properties of In2O3-based gas sensor by chemical modification with SiO2. Chin Chem Lett 15(12):1509–1512

    CAS  Google Scholar 

  • Zhan Z, Jiang D, Xu J (2005) Investigation of a new In2O3-based selective H2 gas sensor with low power consumption. Mater Chem Phys 90:250–254

    Article  CAS  Google Scholar 

  • Zhang C, Boudiba A, Navio C, Olivier M-G, Snyders R, Debliquy M (2012) Study of selectivity of NO2 sensors composed of WO3 and MnO2 thin films grown by radio frequency sputtering. Sens Actuators B 161:914–922

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korotcenkov, G. (2013). Filters in Gas Sensors. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7165-3_12

Download citation

Publish with us

Policies and ethics