Skip to main content

Introduction

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Atmospheric air contains numerous kinds of chemical species, natural and artificial, some of which are vital to our life while many others are more or less harmful. Gas sensors control the composition of the air and therefore these devices make it possible to control the quality of the surrounding atmosphere. This chapter describes possible areas of applications as well as approaches used for gas sensor classification, discusses requirements for gas sensors vs the field of application, and carries out a comparative analysis of gas sensors based on different principles of operation. A general consideration of materials acceptable for gas sensor design is included. The chapter includes 16 figures, 23 tables, and 177 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamchuk VI, Hummel IW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for precision agriculture. Comput Electron Agric 44(1):71–91

    Google Scholar 

  • Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766

    CAS  Google Scholar 

  • Afzal A, Dickert FL (2011) Surface acoustic wave sensors for chemical applications. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 3, Solid state devices. Momentum Press, New York, pp 447–484

    Google Scholar 

  • Afzal A, Cioffi N, Sabbatini L, Torsi L (2012) NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens Actuators B 171–172:25–42

    Google Scholar 

  • Ando M (2006) Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air. Trends Anal Chem 25(10):937–948

    CAS  Google Scholar 

  • Aroutiounian V (2007) Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int J Hydrogen Energy 32(9):1145–1158

    CAS  Google Scholar 

  • Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sensor Rev 24(2):181–198

    Google Scholar 

  • Arya SK, Krishnan S, Silva H, Jeana S, Bhansali S (2012) Advances in materials for room temperature hydrogen ­sensors. Analyst 137:2743–2756

    CAS  Google Scholar 

  • Ast C, Schmälzlin E, Löhmannsröben H-G, van Dongen JT (2012) Optical oxygen micro- and nanosensors for plant applications. Sensors 12:7015–7032

    CAS  Google Scholar 

  • Azevedo AM, Prazeres DMF, Cabral JMS, Fonseca LP (2005) Ethanol biosensors based on alcohol oxidase. Biosens Bioelectron 21(2):235–247

    CAS  Google Scholar 

  • Baldini F, Chester AN, Homola J, Martellucci S (eds) (2006) Optical chemical sensors. Springer, Dordrecht

    Google Scholar 

  • Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167

    CAS  Google Scholar 

  • Basu S, Basu PK (2009) Nanocrystalline metal oxides for methane sensors: role of noble metals. J Sensors 2009, 861968

    Google Scholar 

  • Battison FM, Ramseyer J-P, Lang HP, Baller MK, Gerber C, Gimzewski JK, Meyer E, Guntherodt H-J (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens Actuators B 77:122–131

    Google Scholar 

  • Boon-Brett L, Bousek J, Moretto P (2009) Reliability of commercial available hydrogen sensors for detection of ­hydrogen at critical concentrations: part II – selected sensor test results. Int J Hydrogen Energy 34:562–571

    CAS  Google Scholar 

  • Brett CMA (2001) Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl Chem 73(12):1969–1977

    CAS  Google Scholar 

  • Brett CMA, Brett AMO (1998) Electroanalysis. Oxford University Press, Oxford

    Google Scholar 

  • Brinzari V, Korotchenkov G, Dmitriev S (2000) Theoretical study of semiconductor thin film gas sensitivity: attempt to consistent approach. J Electron Technol 33:225–235

    Google Scholar 

  • Britton CL Jr, Jones RL, Oden PI, Hu Z, Warmack RJ, Smith SF, Bryan WL, Rochelle JM (2000) Multiple-input microcantilever sensors. Ultramicroscopy 82:17–21

    CAS  Google Scholar 

  • Brown VR (2006) Sensor selection for hand-held portable gas detection. In: Mars-Proietti L (ed) The grey house safety and security directory. Grey House Publishing, Millerton, NY, pp 291–293, http://www.enmet.com

    Google Scholar 

  • Cao W, Duan Y (2006) Breath analysis: potential for clinical diagnosis and exposure assessment. Clin Chem 52(5):800–811

    CAS  Google Scholar 

  • Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce DS, Taurino AM (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5(5):1335–1348

    CAS  Google Scholar 

  • CFR (1994) Code of Federal Regulations: the Superintendent of Documents. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Chan K, Ito H, Inaba H (1984) An optical fiber-based gas sensor for remote absorption measurements of low-level methane gas in the near-infrared region. J Lightwave Technol LT-2:234–237

    CAS  Google Scholar 

  • Chan PCH, Yan G, Sheng L, Sharma RK, Tang Z, Sin JKO, Hising L-M, Wang Y (2002) An integrated gas sensor ­technology using surface micromachining. Sens Actuators B 82:277–283

    CAS  Google Scholar 

  • Chatzandroulis S, Tserepi A, Goustouridis D, Normand P, Tsoukalas D (2002) Fabrication of single crystal Si cantilevers using a dry release process and application in a capacitive-type humidity sensor. Microelectron Eng 61–62: 955–961

    Google Scholar 

  • Chatzandroulis S, Tsouti V, Raptis I, Goustouridis D (2011) Capacitance-type chemical sensors. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 4, Solid state sensors. Momentum Press, New York, pp 229–260

    Google Scholar 

  • Chen Z, Lu C (2005) Humidity sensors: a review of materials and mechanisms. Sensor Lett 3:274–295

    CAS  Google Scholar 

  • Choi MMF, Hawkin P (2003) Development of an optical hydrogen sulphide sensor. Sens Actuators B 90:211–215

    CAS  Google Scholar 

  • Chou J (2000) Hazardous gas monitors: a practical guide to selection, operation and application. McGraw-Hill, New York

    Google Scholar 

  • Cleaver KD (2001) The analysis of process gases: a review. Accred Qual Assur 6(1):8–15

    CAS  Google Scholar 

  • Clifford PK (1983) Microcomputational selectivity enhancement of semiconductor gas sensors. In: Proceeding of ­international meeting on chemical sensors, Fukuoka, 19–22 Sept 1983, pp 153–158

    Google Scholar 

  • Cutmore TRH, James DA (2007) Sensors and sensor systems for psychophysiological monitoring: a review of current trends. J Psychophysiol 21(1):51–71

    Google Scholar 

  • Docquier N, Candel S (2002) Combustion control and sensor: a review. Prog Energy Combust Sci 28:107–150

    CAS  Google Scholar 

  • DOE (2002) Glass industry: technology road map. DOE Report, Apr 2002

    Google Scholar 

  • Doll T, Lechner J, Eisele I, Schierbaum KD, Gopel W (1996) Ozone detection in the ppb range with work function ­sensors operating at room temperature. Sens Actuators B 34:506–510

    CAS  Google Scholar 

  • Drake C, Deshpande S, Bera D, Seal S (2007) Metallic nanostructured materials based sensors. Intern Mater Rev 52(5):289–317

    CAS  Google Scholar 

  • Eisele I, Doll T, Burgmair M (2001) Low power gas detection with FET sensors. Sens Actuators B 78:19–25

    CAS  Google Scholar 

  • Ekedahl L-G, Eriksson M, Lundström I (1998) Hydrogen sensing mechanisms of metal-insulator interfaces. Acc Chem Res 31:249–256

    CAS  Google Scholar 

  • Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors: a comprehensive review. Crit Rev Solid State Mater Sci 29:111–188

    CAS  Google Scholar 

  • Fanget S, Hentz S, Puget P, Arcamone J, Matheron M, Colinet E, Andreucci P, Duraffourg L, Ed M, Roukes ML (2011) Gas sensors based on gravimetric detection—a review. Sens Actuators B 160:804–821

    CAS  Google Scholar 

  • Fergus JW (2007) Materials for high temperature electrochemical NOx gas sensors. Sens Actuators B 121:652–663

    CAS  Google Scholar 

  • Fergus JW (2008) A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors. Sens Actuators B 134:1034–1041

    CAS  Google Scholar 

  • Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semiconductor gas sensors in environmental monitoring. Sensors 10:5469–5502

    CAS  Google Scholar 

  • Fitzgerald FT, Tierney LM Jr (1982) The bedside Sherlock Holmes. West J Med 137:169–175

    CAS  Google Scholar 

  • Fleet B, Gunasingham H (1992) Electrochemical sensors for monitoring environmental pollutants. Talanta 39:1449–1457

    CAS  Google Scholar 

  • Flueckiger J, Ko FK, Cheung KC (2009) Microfabricated formaldehyde gas sensors. Sensors 9:9196–9215

    CAS  Google Scholar 

  • Fontes J (2005) Humidity sensors. In: Wilson JS (ed) Sensor technology handbook. Elsevier, Oxford, pp 271–284

    Google Scholar 

  • Freund MS, Lewis NS (1995) A chemically diverse conducting polymer-based electronic nose. Proc Natl Acad Sci USA 92:2652–2656

    CAS  Google Scholar 

  • Gardner JW (1991) Detection of vapours and odours from a multisensor array using pattern recognition: principal component and cluster analysis. Sens Actuators 4:109–115

    CAS  Google Scholar 

  • Gardner JW, Bartlett PN (1999) Electronic noses. Principles and applications. Oxford University Press, Oxford

    Google Scholar 

  • Gauglitz G (2005) Direct optical sensors: principles and selected applications. Anal Bioanal Chem 381:141–155

    CAS  Google Scholar 

  • Geistlinger H (1993) Electron theory of thin film gas sensors. Sens Actuators B 17:47–60

    CAS  Google Scholar 

  • Geistlinger H (1994) Accumulation layer model for Ga2O3 thin-film gas sensors based on the Volkenstein theory of catalysis. Sens Actuators B 18–19:125–131

    Google Scholar 

  • Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108:522–542

    CAS  Google Scholar 

  • Gopel W (1996) Ultimate limits in the miniaturization of chemical sensors. Sens Actuators A 56:83–102

    Google Scholar 

  • Gopel W, Schierbaum KD (1995) SnO2 sensors: current status and future prospects. Sens Actuators B 26–27:1–12

    Google Scholar 

  • Greenblatt M, Shuk P (1996) Solid-state humidity sensors. Solid State Ionics 86–88:995–1000

    Google Scholar 

  • Haug M, Schierbaum KD, Gauglitz G, Göpel W (1993) Chemical sensors based upon polysiloxanes: comparison between optical, quartz microbalance, calorimetric, and capacitance sensors. Sens Actuators B 11:383–391

    CAS  Google Scholar 

  • Haugen JE, Kvaal K (1998) Electronic nose and artificial neural network. Meat Sci 49:S273–S286

    Google Scholar 

  • Health Canada 2006 (http://www.hc-sc.gc.ca/ewh-semt/air/in/res-in/index-eng.php)

  • Ho CK, Itamura MT, Kelley M, Hughes RC (2001) Review of chemical sensors for in-situ monitoring of volatile ­contaminants. Sandia Report SAND2001-0643, Unlimited release, Sandia National Laboratories, Albuquerque, NM. http://www.sandia.gov/sensor

  • Ho CK, Robinson A, Miller DR, Davis MJ (2005) Overview of sensors and needs for environmental monitoring. Sensors 5:4–37

    CAS  Google Scholar 

  • Holzinger M, Maier J, Sitte W (1997) Potentiometric detection of complex gases: application to CO2. Solid State Ionics 94:217–225

    CAS  Google Scholar 

  • Honeywell Analytics (2012) Gas handbook. http://www.honeywellanalytics.com/Technical%20Library/EMEAI/1%20Types%20of%20Documents/Gas%20Book/Gas%20Book%20English.pdf

  • Hubert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors – a review. Sens Actuators B 157:329–352

    Google Scholar 

  • Hulanicki A, Geab S, Ingman F (1991) Chemical sensors definitions and classification. Pure Appl Chem 63(9):1247–1250

    Google Scholar 

  • Igarashi I (1986) New technology of sensors for automotive applications. Sens Actuators 10:181–193

    CAS  Google Scholar 

  • Ishihara T, Matsubara S (1998) Capacitive type gas sensors. J Electrocer 2:215–228

    CAS  Google Scholar 

  • Justino CIL, Rocha-Santos TA, Duarte AC, Rocha-Santos TA (2010) Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends Anal Chem 29(10):1172–1183

    CAS  Google Scholar 

  • Keefe MK, Benkstein KD, Hup JT (2000) Luminescent sensor molecules based on coordinated metals: a review of recent developments. Coord Chem Rev 205(1):201–228

    CAS  Google Scholar 

  • Kharitonov SA, Barnes PJ (2000) Clinical aspects of exhaled nitric oxide. Eur Respir J 16:781–792

    CAS  Google Scholar 

  • King WH Jr (1964) Piezoelectric sorption detector. Anal Chem 36:1735–1739

    CAS  Google Scholar 

  • Kohl D, Kelleter J, Petig H (2001) Detection of fires by gas sensors. In: Baltes H, Gopel W, Hesse J (eds) Sensors update, vol 9(1). Wiley-VCH, Weinheim, pp 161–223

    Google Scholar 

  • Korotcenkov G (2007a) Metal oxides for solid state gas sensors. What determines our choice? Mater Sci Eng B 139:1–23

    CAS  Google Scholar 

  • Korotcenkov G (2007b) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B 121:664–678

    CAS  Google Scholar 

  • Korotcenkov G (ed) (2010) Chemical sensors: fundamentals of sensor materials, vols 1–3. Momentum Press, New York

    Google Scholar 

  • Korotcenkov G (ed) (2011) Chemical sensors: comprehensive sensor technologies, vol 6, Sensors application. Momentum Press, New York

    Google Scholar 

  • Korotcenkov G, Cho BK (2010) Porous semiconductors: advanced material for gas sensor applications. Crit Rev Solid State Mater Sci 35(1):1–37

    CAS  Google Scholar 

  • Korotcenkov G, Cho BK (2011) Chemical sensor selection and application guide. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 6, Sensors application. Momentum Press, New York, pp 281–348

    Google Scholar 

  • Korotcenkov G, Cho BK (2012) Ozone measuring: what can limit the application of SnO2-based gas sensors? Sens Actuators B 161:28–44

    CAS  Google Scholar 

  • Korotcenkov G, Han S-D, Stetter JR (2009) Review of electrochemical hydrogen sensors. Chem Rev 109(3): 1402–1433

    CAS  Google Scholar 

  • Korotcenkov G, Cho BK, Narayanaswamy R, Sevilla F III (2011) Optical and fiber optic chemical sensors. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 5, Electrochemical and optical sensors. Momentum Press, New York, pp 311–476

    Google Scholar 

  • Korotcenkov G, Stetter JR (2011) Chemical gas mixture analysis and the electronic nose: current status, future trends. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 6, Chemical sensors applications. Momentum, New York, pp 1–56

    Google Scholar 

  • Kowaiski BR, Bender CF (1972) Pattern recognition: a powerful approach to interpreting chemical data. J Am Chem Soc 94:5632–5639

    Google Scholar 

  • Krol S, Zabiegata B, Namiesnik J (2010) Monitoring VOCs in atmospheric air. I. On-line gas analyzers. Trends Anal Chem 29(9):1092–1100

    CAS  Google Scholar 

  • Kummer AM, Hierlemann A, Baltes H (2004) Tuning sensitivity and selectivity of complementary metal oxide ­semiconductor-based capacitive chemical microsensors. Anal Chem 76:2470–2477

    CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Lambeck PV (1992) Integrated opto-chemical sensors. Sens Actuators B 8:103–116

    CAS  Google Scholar 

  • Lee J-H (2003) Review on zirconia air-fuel ratio sensors for automotive applications. J Mater Sci 38:4247–4257

    CAS  Google Scholar 

  • Lee J-H, Tsai C-L, Fann C-S, Wang S-H (2002) Design of an acousto-magnetic oxygen sensor. J Med Biol Eng 22(4):193–198

    Google Scholar 

  • Leiner MJP (1991) Luminescence chemical sensors for biomedical applications: scope and limitations. Anal Chim Acta 255:209–222

    CAS  Google Scholar 

  • Lim SH, Jaworski J, Satyanarayana S, Wang F, Raorane D, Lee S-W, Majumdar A (2007) Nanomechanical chemical sensor platform. In: Proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems, Bangkok, 16–19 Jan, pp 886–889

    Google Scholar 

  • Lippitsch ME, Pusterhofer J, Leiner MJP, Wolfbeis OS (1988) Fiber-optic oxygen sensor with the fluorescence decay time as the information carrier. Anal Chim Acta 205:1–6

    CAS  Google Scholar 

  • Lu G, Miura N, Yamazoe N (1996) High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode. Sens Actuators B 35–36:130–135

    Google Scholar 

  • Lundström I (1991) Field effect chemical sensors. In: Gopel W, Hesse J, Zemel JN (eds) Sensors: a comprehensive survey, vol 1. VCH, Weinheim, pp 467–529

    Google Scholar 

  • Lundstrom I, Sundgren H, Winquist F, Eriksson M, Krantz-Rulcker C, Lloyd-Spetz A (2007) Twenty-five years of field effect gas sensor research in Linkoping. Sens Actuators B 121:247–262

    Google Scholar 

  • Marczin N, Kharitonov SA, Yacoub MH, Barnes PJ (eds) (2005) Disease markers in exhaled breath. Taylor and Francis, Oxford

    Google Scholar 

  • Maricq MM (2007) Chemical characterization of particulate emissions from diesel engines: a review. J Aerosol Sci 38(11):1079–1118

    CAS  Google Scholar 

  • Maskell WC (1987) Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors. J Phys E: Sci Instrum 20:1156–1168

    CAS  Google Scholar 

  • Massie C, Stewart G, McGregor G, Gilchrist JR (2006) Design of a portable optical sensor for methane gas detection. Sens Actuators B 113:830–836

    CAS  Google Scholar 

  • Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    CAS  Google Scholar 

  • Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77(2):237–256

    CAS  Google Scholar 

  • Ménil F, Coillard V, Lucat C (2000) Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines. Sens Actuators B 67:1–23

    Google Scholar 

  • Merilainen PT (1990) A differential paramagnetic sensor for breath-by-breath oximetry. J Clin Monit 6(1):65–73

    CAS  Google Scholar 

  • Messer H, Zinevich A, Alpert P (2006) Environmental monitoring by wireless communication networks. Science 312:713

    CAS  Google Scholar 

  • Miller JB (2001) Catalytic sensors for monitoring explosive atmospheres. IEEE Sensors J 1(1):88–93

    CAS  Google Scholar 

  • Miura N, Ono M, Shimanzoe K, Yamazoe N (1998a) A compact solid-state amperometric sensor for detection of NO2 in ppb range. Sens Actuators B 49:101–109

    CAS  Google Scholar 

  • Miura N, Raisen T, Lu G, Yamazoe N (1998b) Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes. Sens Actuators B 47:84–91

    CAS  Google Scholar 

  • Monkman G (2000) Monomolecular Langmuir-Blodgett films—tomorrow’s sensors? Sensor Rev 20:127–131

    Google Scholar 

  • Morrison SR (1987) Mechanism of semiconductor gas sensor operation. Sens Actuators 11:283–287

    CAS  Google Scholar 

  • Moseley PT, Norris JOW, Williams DE (eds) (1991) Techniques and mechanisms in gas sensing. Adam Hilger, Bristol

    Google Scholar 

  • Moskalenko KL, Nadezhdinskii AI, Adamovskaya IA (1996) Human breath trace gas content study by tuneable diode laser spectroscopy. Infrared Phys Technol 37:181–192

    CAS  Google Scholar 

  • Muñoz R, Sivret EC, Parcsi G, Lebrero R, Wang X, Suffet IH, Stuetz RM (2010) Monitoring techniques for odour abatement assessment. Water Res 44(18):5129–5149

    Google Scholar 

  • Nakahara T (2004) Development of gas sensors and cultivation of new markets for air quality. In: Proceedings of the 38th chemical sensor symposium, Tokyo, 24–26 Mar, pp 73–75

    Google Scholar 

  • Narayanaswamy R, Wolfbeis OS (eds) (2004) Optical sensors—industrial, environmental and diagnostic applications, vol 1, Chemical sensors and biosensors. Springer, Berlin

    Google Scholar 

  • Neethirajan S, Jayas DS, Sadistap S (2009) Carbon dioxide (CO2) sensors for the agri-food industry—a review. Food Bioprocess Technol 2:115–121

    CAS  Google Scholar 

  • NFPA (2003) Operation of fire protection systems. National Fire Protection Association, Quincy, MA

    Google Scholar 

  • Pandey SK, Kim K-H, Tang K-T (2012) A review of sensor-based methods for monitoring hydrogen sulfide. Trends Anal Chem 32:87–99

    CAS  Google Scholar 

  • Parrish DD, Fehsenfel FC (2000) Methods for gas-phase measurements of ozone, ozone precursors and aerosol ­precursors. Atmos Environ 34(12–14):1921–1957

    CAS  Google Scholar 

  • Patel PD (2002) Biosensors for measurement of analytes implicated in food safety: a review. Trends Anal Chem 21(2):96–115

    CAS  Google Scholar 

  • Pedersen LD (1991) Assessment of sensors used in the food industry. Food Control 2(2):87–98

    Google Scholar 

  • Pejcic D, Eadington P, Ross A (2007) Environmental monitoring of hydrocarbons: a chemical sensor perspective. Environ Sci Technol 41(18):6333–6342

    CAS  Google Scholar 

  • Peng G, Trock E, Haick H (2008) Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett 8:3631–3636

    CAS  Google Scholar 

  • Pletcher D, Evans J, Warburton PR, Gibbs TK (1991) Acidic gas sensors and method of using the same. US Patent 5,071,526

    Google Scholar 

  • Potje-Kamloth K (2008) Semiconductor junction gas sensors. Chem Rev 108:367–399

    CAS  Google Scholar 

  • Potyrailo RA, Mirsky VM (2008) Combinatorial and high-throughput development of sensing materials: the first 10 years. Chem Rev B 108:770–813

    CAS  Google Scholar 

  • Potyrailo RA, Surman C, Nagraj N, Burns A (2011) Materials and transducers toward selective wireless gas sensing. Chem Rev 111:7315–7354

    CAS  Google Scholar 

  • Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38:4271–4282

    CAS  Google Scholar 

  • Riegel J, Neumann H, Wiedenmann N-M (2002) Exhaust gas sensors for automotive emission control. Solid State Ionics 152–153:783–800

    Google Scholar 

  • Rittersma ZM (2002) Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sens Actuators A 96:196–210

    CAS  Google Scholar 

  • Rock F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725

    Google Scholar 

  • Sadaoka Y (1992) Organic semiconductor gas sensors. In: Sberveglieri G (ed) Gas sensors. Kluwer Academic, Dordrecht, pp 187–218

    Google Scholar 

  • Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. Z Physik 155:206–212

    CAS  Google Scholar 

  • Sazhin SG, Soborover EI, Tokarev SV (2003) Sensor methods of ammonia inspection. Russ J Nondestruct Test 39(10):791–806

    CAS  Google Scholar 

  • Schreiter M, Gabl R, Lerchner J, Hohlfeld C, Delan A, Wolf G, Bluher A, Katzschner B, Mertig M, Pompe W (2006) Functionalized pyroelectric sensors for gas detection. Sens Actuators B 119:255–261

    CAS  Google Scholar 

  • Semancik S (2001) Microhotplate platform for chemical sensors research. Sens Actuators B 77:579–591

    CAS  Google Scholar 

  • Shemshad J, Aminossadati SM, Kizil MS (2012) A review of developments in near infrared methane detection based on tunable diode laser. Sens Actuators B 171–172:77–92

    Google Scholar 

  • Shin W, Tajima K, Choi Y, Nishibori M, Izu N, Matsubara I, Murayama N (2006) Micro-thermoelectric devices with ceramic combustors. Sens Actuators A 130–131:411–418

    Google Scholar 

  • Shin W, Nishibori M, Matsubara I (2011) Gas sensors using pyroelectric and thermoelectric effects. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 4, Solid-state devices. Momentum Press, New York, pp 261–319

    Google Scholar 

  • Silva SF, Coelho L, Frazão O, Santos JL, Malcata FX (2012) A review of palladium-based fiber-optic sensors for molecular hydrogen detection. IEEE Sensors J 12(1):93–102

    CAS  Google Scholar 

  • Singh S (2007) Sensors—an effective approach for the detection of explosives. J Hazard Mater 144:15–28

    CAS  Google Scholar 

  • Smith D, Spanel P, Davies S (1999) Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: a preliminary study. J Appl Physiol 87:1584–1588

    CAS  Google Scholar 

  • Stetter JR, Penrose WR, Yao S (2003) Sensors, chemical sensors, electrochemical sensors, and ECS. J Electrochem Soc 150(2):S11–S16

    CAS  Google Scholar 

  • Stetter JR, Korotcenkov G, Zeng X, Tang Y, Liu Y (2011) Electrochemical gas sensors: fundamentals, fabrication and parameters. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 3, Electrochemical and optical sensors. Momentum Press, New York, pp 1–123

    Google Scholar 

  • Suzuki S, Noda Y, Sawaki N (1999) Market overview: oxygen sensors. In: Baltes H, Gopel W, Hesse J (eds) Sensors update, vol 6(1). Wiley-VCH, Weinheim, pp 381–396

    Google Scholar 

  • Symons EA (1992) Catalytic gas sensors. In: Sberveglieri G (ed) Gas sensors. Kluwer, Dordrecht, pp 169–185

    Google Scholar 

  • Talazac L, Brunet J, Battut V, Blanc JP, Pauly A, Germain JP, Pellier S, Soulier C (2001) Air quality evaluation by monolithic InP-based resistive sensors. Sens Actuators B 76:258–264

    CAS  Google Scholar 

  • Taylor RF (1996) Chemical and biological sensors: markets and commercialization. In: Taylor RF, Schultz JS (eds) Handbook of chemical sensors and biosensors. IOP Publishing, Bristol

    Google Scholar 

  • Taylor RF, Schultz JS (eds) (1996) Handbook of chemical sensors and biosensors. IOP Publishing, Bristol

    Google Scholar 

  • Timmer B, Olthuis W, van den Berg A (2005) Ammonia sensors and their applications—a review. Sens Actuators B 107:666–677

    CAS  Google Scholar 

  • Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens Actuators B 23:135–156

    CAS  Google Scholar 

  • Trinchi A, Woldarski W, Li YX (2004) Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC. Sens Actuators B 100:94–98

    CAS  Google Scholar 

  • Valeur B, Brochon JC (eds) (2001) New trends in fluorescence spectroscopy: applications to chemical and life sciences. Springer, Berlin

    Google Scholar 

  • Vashist SK, Korotcenkov G (2011) Microcantilever-based chemical sensors. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 3, Solid state devices. Momentum Press, New York, pp 321–376

    Google Scholar 

  • Voinova M, Jonson M (2011) The quartz crystal microbalance. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 3, Solid state devices. Momentum Press, New York, pp 377–483

    Google Scholar 

  • Warburton PR, Pagano MP, Hoover R, Logman M, Crytzer K, Warburton YJ (1998) Amperometric gas sensor response times. Anal Chem 70(5):998–1006

    CAS  Google Scholar 

  • Ward JPT (2008) Oxygen sensors in context. Biochim Biophys Acta Bioenerg 1777(1):1–14

    CAS  Google Scholar 

  • Werle P, Slemr F, Maurer K, Kormann R, Mucke R, Janker B (2002) Near-and mid-infrared laser-optical sensors for gas analysis. Opt Lasers Eng 37:101–1114

    Google Scholar 

  • White LT (2000) Hazardous gas monitoring: a guide for semiconductor and other hazardous occupancies. Noyes/William Andrew, Norwich, NY

    Google Scholar 

  • White RM, Voltmer FW (1965) Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett 7:314–315

    Google Scholar 

  • Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9:5099–5148

    CAS  Google Scholar 

  • Wilson AD, Baietto M (2011) Advances in electronic-nose technologies developed for biomedical applications. Sensors 11:1105–1176

    CAS  Google Scholar 

  • Wilson DM, Hoyt S, Janata J, Booksh K, Obando L (2001) Chemical sensors for portable, handheld field instruments. IEEE Sensors J 1:256–274

    CAS  Google Scholar 

  • Wohltjen H, Barger WR, Snow AW, Jarvis NL (1985) A vapor-sensitive chemiresistor fabricated with planar microelectrodes and a Langmuir-Blodgett organic semiconductor film. IEEE Trans Electron Dev ED-32:1170–1174

    CAS  Google Scholar 

  • Wolfbeis OS (1991) Fiber optic chemical sensors and biosensors, vol 1. CRC, Boca Raton, FL

    Google Scholar 

  • Wolfbeis OS (1992) Fiber optic chemical sensors and biosensors, vol 2. CRC, Boca Raton, FL

    Google Scholar 

  • Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669

    CAS  Google Scholar 

  • Wollenstein J, Plaza JA, Canè C, Min Y, Bottner H, Tuller HL (2003) A novel single chip thin film metal oxide array. Sens Actuators B 93:350–355

    CAS  Google Scholar 

  • Yakovlev YP, Baranov AN, Imenkov AN, Mikhailova MP (1991) Optoelectronic LED-photodiode pairs for moisture and gas sensors in spectral range 1.8–4.8 μm. In: Wolfbeis S (ed) Chemical and medical sensors. Proc SPIE 1510:170–177

    Google Scholar 

  • Yamazoe N (2005) Toward innovations of gas sensor technology. Sens Actuators B 108:2–14

    CAS  Google Scholar 

  • Yamazoe N, Miura N (1994) Environmental gas sensing. Sens Actuators B 20:95–102

    CAS  Google Scholar 

  • Yamazoe N, Miura N (1996) Prospect and problems of solid electrolyte-based oxygenic gas sensors. Solid State Ionics 86–88:987–993

    Google Scholar 

  • Yamazoe N, Suematsu K, Shimanoe K (2012) Extension of receptor function theory to include two types of adsorbed oxygen for oxide semiconductor gas sensors. Sens Actuators B 163:128–135

    CAS  Google Scholar 

  • Yeo TL, Sun T, Grattan KTV (2008) Fibre-optic sensor technologies for humidity and moisture measurement. Sens Actuators A 144:280–295

    CAS  Google Scholar 

  • Zemel J (1988) Theoretical description of gas film interaction on SnO x . Thin Solid Films 163:89–195

    Google Scholar 

  • Zhang H, Pang W, Kim ES, Yu H (2010) Micromachined silicon and polymer probes integrated with film-bulkacoustic-resonator mass sensors. J Micromech Microeng 20:125008

    Google Scholar 

  • Zosel J, Oelßner W, Decker M, Gerlach G, Guth U (2011) The measurement of dissolved and gaseous carbon dioxide concentration. Meas Sci Technol 22:072001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korotcenkov, G. (2013). Introduction. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7165-3_1

Download citation

Publish with us

Policies and ethics