Skip to main content

Comparative Canopy Biology and the Structure of Ecosystems

  • Chapter
  • First Online:

Abstract

The way ecologists think about canopy biology as a scientific discipline could lead them to overlook different communities of spatially fixed organisms that may have properties usefully compared to or contrasted with forest canopies. This chapter represents a series of discussions and reviews on the possible nature and limits of canopy biology and introduces the prospect of a general comparative science of biological canopies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adey WH, Loveland K (2007) Dynamic aquaria: building living ecosystems, 3rd edn. Academic, New York

    Google Scholar 

  • Adey WH, Steneck RS (1985) Highly productive eastern Caribbean reefs: synergistic effects of biological, chemical, physical, and geological factors. In: Reaka ML (ed) The ecology of coral reefs, 3. Office of Undersea Research, Rockville

    Google Scholar 

  • Aira M, McNamara NP, Piearce TG, Domínguez J (2009) Microbial communities of Lumbricus terrestris L. middens: structure, activity, and changes through time in relation to earthworm presence. J Soils Sediments 9:54–61

    Article  CAS  Google Scholar 

  • Allen TFH (1977) Scale in microscopic algal ecology: a neglected dimension. Phycologia 16:253–257

    Article  Google Scholar 

  • Allison DG, Gilbert P, Lappin-Scott HM, Wilson M (eds) (2000) Community structure and co–operation in biofilms. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Al-Najjar MAA, de Beer D, Kühl M, Polerecky L (2012) Light utilization efficiency in photosynthetic microbial mats. Environ Microbiol 14:982–992

    Article  CAS  Google Scholar 

  • Aluja M, Prokopy RJ, Elkinton JS, Laurence WF (1989) Novel approach for tracking and quantifying the movement patterns of insects in three dimensions under seminatural conditions. Environ Entomol 18:1–7

    Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region–wide declines in architectural complexity. Proc R Soc Lond B Biol 276:3019–3025

    Article  Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR, Gill JA (2011) Coral identity underpins architectural complexity on Caribbean reefs. Ecol App. 21:2223–2231

    Article  PubMed  Google Scholar 

  • Anderson TW (1994) Role of macroalgal structure in the distribution and abundance of a temperate reef fish. Mar Ecol Prog Ser 113:279–290

    Article  Google Scholar 

  • Anderson TW (2001) Predator responses, prey refuges, and density–dependent mortality of a marine fish. Ecology 82:245–257

    Article  Google Scholar 

  • André HM, Noti M-I, Lebrun P (1994) The soil fauna: the other last biotic frontier. Biodivers Conserv 3:45–56

    Article  Google Scholar 

  • André HM, Ducarme X, Lebrun P (2002) Soil biodiversity: myth, reality, or conning? Oikos 96:3–24

    Article  Google Scholar 

  • Andrews JH (2006) Population growth and the landscape ecology of microbes on leaf surfaces. In: Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (eds) Microbial ecology of aerial plant surfaces. CAB International, Wallingford

    Google Scholar 

  • Anthony KR, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259

    Article  Google Scholar 

  • Atger C, Edelin C (1993) Premières données sur l’architecture comparée des systèmes racinaires et caulinaires. Can J Bot 72:963–975

    Article  Google Scholar 

  • Aylor DE (1999) Biophysical scaling and the passive dispersal of fungus spores: relationship to integrated pest management strategies. Agric For Meteorol 97:275–292

    Article  Google Scholar 

  • Baird AH, Hughes TP (2000) Competitive dominance by tabular corals: an experimental analysis of recruitment and survival of understorey assemblages. J Exp Mar Biol Ecol 251:117–132

    Article  PubMed  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  • Barlow PW (1994) Rhythm, periodicity and polarity as bases for morphogenesis in plants. Biol Rev 69:475–525

    Article  Google Scholar 

  • Bates M (1960) The forest and the sea. Random House, New York

    Google Scholar 

  • Bateson MC (1972) Our own metaphor. Knopf, New York

    Google Scholar 

  • Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81

    Article  PubMed  CAS  Google Scholar 

  • Beare MH, Coleman DC, Crossley DA Jr, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22

    Article  CAS  Google Scholar 

  • Bell SS, Coen LD (1982) Investigations on epibenthic meiofauna. I. Abundances on and repopulation of the tube–caps of Diopatra cuprea (Polychaeta: Onuphidae). Mar Biol 67:303–309

    Article  Google Scholar 

  • Benzing DH (1991) Aerial roots and their environments. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York

    Google Scholar 

  • Benzing DH (2012) Air plants: epiphytes and aerial gardens. Cornell University Press, Ithaca

    Google Scholar 

  • Beugnon G, Fourcassié V (1988) How do red wood ants orient when foraging in a three dimensional system? II. Field experiments. Ins Soc 35:106–124

    Article  Google Scholar 

  • Beyenal H, Lewandowski Z (2002) Internal and external mass transfer in biofilms grown at various flow velocities. Biotechnol Prog 18:55–61

    Article  CAS  Google Scholar 

  • Bohr N (1955) Science and the unity of Knowledge. In: Leary L (ed) The unity of knowledge. Doubleday, Garden City

    Google Scholar 

  • Borchers P, Field JG (1981) The effect of kelp shading on phytoplankton production. Bot Mar 24:89–91

    Article  Google Scholar 

  • Boston HL, Hill WR (1991) Photosynthesis–light relations of stream periphyton communities. Limnol Oceanogr 36:644–656

    Article  CAS  Google Scholar 

  • Boyle M, Janiak D, Craig S (2007) Succession in a Humboldt Bay marine fouling community: the role of exotic species, larval settlement and winter storms. In: Proceedings 2004 Humboldt Bay symposium, California Sea Grant, San Diego

    Google Scholar 

  • Brady J, Gibson G, Packer MJ (1989) Odour movement, wind direction, and the problem of host–finding by tsetse flies. Physiol Entomol 14:369–380

    Article  Google Scholar 

  • Brigham RM, Grindal SD, Firman MC, Morissette JL (1997) The influence of structural clutter on activity patterns of insectivorous bats. Can J Zool 75:131–136

    Article  Google Scholar 

  • Brooks R, Owen-Smith N (1994) Plant defenses against mammalian herbivores: are juvenile Acacia more heavily defended than mature trees? Bothalia 24:211–215

    Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Bryers JD (2000) Biofilm formation and persistence. In: Bryers JD (ed) Biofilms II: process and applications. Wiley-Liss, New York

    Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311

    Article  Google Scholar 

  • Burkholder JM, Wetzel RG (1989) Epiphytic microalgae on a natural substratum in a phosphorus–limited hardwater lake: seasonal dynamics of community structure, biomass and ATP content. Arch Hydrobiol Suppl 83:1–56

    Google Scholar 

  • Burrows CJ (1990) Processes of vegetation change. Unwin Hyman, London

    Google Scholar 

  • Byrnes G, Jayne BC (2012) The effects of three-dimensional gap orientation on bridging performance and behavior of brown tree snakes (Boiga irregularis). J Exp Biol 215:2611–2620

    Article  PubMed  Google Scholar 

  • Caldwell MM, Richards JM (1986) Competing root systems: morphology and models of absorption. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Campbell GS, Norman JM (1989) The description and measurement of plant canopy structure. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Cannon CH, Leighton M (1994) Comparative locomotor ecology of gibbons and macaques: selection of canopy elements for crossing gaps. Am J Phys Anthropol 93:505–524

    Article  PubMed  CAS  Google Scholar 

  • Cant JGH (1992) Positional behavior and body size of arboreal primates: a theoretical framework for field studies and an illustration of its application. Am J Phys Anthropol 88:273–283

    Article  PubMed  CAS  Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–363

    Article  Google Scholar 

  • Carpenter RC, Williams SL (1993) Effects of algal turf canopy height and microscale substratum topography on profiles of flow speed in a coral forereef environment. Limnol Oceanogr 38:687–694

    Article  Google Scholar 

  • Carr MH (1989) Effects of macroalgal assemblages on the recruitment of temperate zone reef fishes. J Exp Mar Biol Ecol 126:59–76

    Article  Google Scholar 

  • Carr MH, Hixon MA (1997) Artificial reefs: the importance of comparisons with natural reefs. Fisheries 22(4):28–33

    Article  Google Scholar 

  • Carr GM, Morin A, Chambers PA (2005) Bacteria and algae in stream periphyton along a nutrient gradient. Freshwater Biol 50:1337–1350

    Article  Google Scholar 

  • Cheroske AG, Williams SL, Carpenter RC (2000) Effects of physical and biological disturbances on algal turfs in Kaneohe Bay, Hawaii. J Exp Mar Biol Ecol 248:1–34

    Article  PubMed  Google Scholar 

  • Chiarucci A, Mistral M, Bonini I, Anderson BJ, Wilson JB (2002) Canopy occupancy: how much of the space in plant communities is filled? Folia Geobot 37:333–338

    Article  Google Scholar 

  • Chilvers GA (1972) Tree root pattern in a mixed eucalypt forest. Aust J Bot 20:229–234

    Article  Google Scholar 

  • Claflin TO (1968) Reservoir aufwuchs on inundated trees. Trans Am Microsc Soc 87:97–104

    Article  Google Scholar 

  • Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55

    Google Scholar 

  • Connell JH (1975) Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Corner EJH (1967) On thinking big. Phytomorphology 17:24–28

    Google Scholar 

  • Costerton JW, Lappin-Scott HM (1995) Introduction to microbial biofilms. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms: the customized microniche. J Bacteriol 176:2137–2142

    PubMed  CAS  Google Scholar 

  • Coxson DS, Nadkarni NM (1995) Ecological roles of epiphytes in nutrient cycles of forest ecosystems. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic, New York

    Google Scholar 

  • Coxson DS, McIntyre DD, Vogel HJ (1992) Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest (Guadeloupe, French West Indies). Biotropica 24:121–133

    Article  Google Scholar 

  • Crespi BJ (2001) The evolution of social behavior in microorganisms. Trends Ecol Evol 16:178–183

    Article  PubMed  Google Scholar 

  • Crowder LB, Cooper WE (1982) Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802–1813

    Article  Google Scholar 

  • Cuthill I, Guilford T (1990) Perceived risk and obstacle avoidance in flying birds. Anim Behav 40:188–190

    Article  Google Scholar 

  • Dagosto M, Yamashita N (1998) Effect of habitat structure on positional behavior and support use in three species of lemur. Primates 39:459–472

    Article  Google Scholar 

  • Dahl AL (1973) Surface area in ecological analysis: quantification of benthic coral–reef algae. Mar Biol 23:239–249

    Article  Google Scholar 

  • Danjon F, Barker DH, Drexhage M, Stokes A (2008) Using three–dimensional plant root architecture in models of shallow–slope stability. Ann Bot 101:1281–1293

    Article  PubMed  Google Scholar 

  • Darwin C (1839) Journal of researches into the geology and natural history of the various countries visited by H.M.S. Beagle. Colburn, London

    Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell–to–cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  • Dawkins R (1982) The extended phenotype. Oxford University Press, Oxford, UK

    Google Scholar 

  • Dawson EY (1966) Cacti in the Galapagos Islands with special reference to their relations with tortoises. In: Bowman RI (ed) The Galapagos, proceedings of the symposium of the California international scientific project, University of California Press, Los Angeles

    Google Scholar 

  • Dayton PK (1971) Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389

    Article  Google Scholar 

  • Dayton PK (1975a) Experimental studies of algal canopy interactions in a sea otter–dominated kelp community at Amchitka Island, Alaska. Fish Bull 73:230–237

    Google Scholar 

  • Dayton PK (1975b) Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol Monogr 45:137–159

    Article  Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Ann Rev Ecol Syst 16:215–245

    Article  Google Scholar 

  • Dayton PK, Tegner MJ, Edwards PB, Riser KL (1999) Temporal and spatial scales of kelp demography: the role of oceanographic climate. Ecol Mongr 69:219–250

    Article  Google Scholar 

  • De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633

    Article  PubMed  Google Scholar 

  • de Kroon H, Hendriks M, van Ruijven J, Ravenek J, Padilla FM, Jongejans E, Visser EJW, Mommer L (2012) Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. J Ecol 100:6–15

    Article  Google Scholar 

  • DeVries PJ, Alexander LG, Chacon IA, Fordyce JA (2012) Similarity and difference among rainforest fruit–feeding butterfly communities in Central and South America. J Anim Ecol 81:472–482

    Google Scholar 

  • Dean RL, Connell JH (1987) Marine invertebrates in an algal succession. III. Mechanisms linking habitat complexity with diversity. J Exp Mar Biol Ecol 109:249–273

    Article  Google Scholar 

  • Dean TA, Thies K, Lagos SL (1989) Survival of juvenile giant kelp: the effects of demographic factors, competitors, and grazers. Ecology 70:483–495

    Article  Google Scholar 

  • Decaëns T (2010) Macroecological patterns in soil communities. Global Ecol Beogeogr 19:287–302

    Article  Google Scholar 

  • Dejean A, Corbara B, Orival J (1999) The arboreal ant mosaic in two Atlantic rain forests. Selbyana 20:133–145

    Google Scholar 

  • Demes B, Jungers WL, Gross TS, Fleagle JG (1995) Kinetics of leaping primates: influence of substrate orientation and compliance. Am J Phys Anthropol 96:419–429

    Article  PubMed  CAS  Google Scholar 

  • Dial R, Bloodworth B, Lee A, Boyne P, Heys J (2004) The distribution of free space and its relation to canopy composition at six forest sites. Forest Sci 50:312–325

    Google Scholar 

  • Dieckmann U, Law R, Metz JAJ (eds) (2000) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Dodd ME, Silvertown J, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53:732–744

    Article  Google Scholar 

  • Dodds WK, Biggs BJF, Lowe RL (1999) Photosynthesis–irradiance patterns in benthic microalgae: variations as a function of assemblage thickness and community structure. J Phycol 35:42–53

    Article  Google Scholar 

  • Doemel WN, Brock TD (1977) Structure, growth, and decomposition of laminated algal–bacterial mats in alkaline hot springs. Appl Environ Microbiol 34:433–452

    PubMed  CAS  Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75

    Google Scholar 

  • Fang S, Clark R, Liao H (2012) 3D quantification of plant root architecture in situ. In: Mancuso S (ed) Measuring roots. Springer, New York

    Google Scholar 

  • Fierer N, Nemergut D, Knight R, Craine JM (2010) Changes through time: integrating microorganisms into the study of succession. Res Microbiol 161:635–642

    Article  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    PubMed  CAS  Google Scholar 

  • Foottit RG, Adler PH (2009) Insect biodiversity: science and society. Wiley–Blackwell, Oxford, UK

    Book  Google Scholar 

  • Foster MS (1975) Regulation of algal community development in a Macrocystis pyrifera forest. Mar Biol 32:331–342

    Article  Google Scholar 

  • Foster K (2010) Social behaviour in microorganisms. In: Székely T, Komdeur J, Moore AJ (eds) Social behaviour: genes, ecology and evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Foster K, Bell T (2012) Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol 22:1845–1850

    Article  PubMed  CAS  Google Scholar 

  • Fourcassie V, Beugnon G (1988) How do red wood ants orient when foraging in a three dimensional system? I. Laboratory experiments. Insect Soc 35:92–105

    Article  Google Scholar 

  • Franco M (1986) The influence of neighbours on the growth of modular organisms with an example from trees. Phil Trans R Soc Lond B 313:209–225

    Article  Google Scholar 

  • Frank DA, Pontes AW, Maine EM, Caruana J, Raina R, Raina S, Fridley JD (2010) Grassland root communities: species distributions and how they are linked to aboveground abundance. Ecology 91:3201–3209

    Article  PubMed  Google Scholar 

  • Fraser SB, Sedberry GR (2008) Reef morphology and invertebrate distribution at continental shelf edge reefs in the south Atlantic bight. Southeast Nat 7:191–206

    Article  Google Scholar 

  • Freiberg M (1997) Spatial and temporal pattern of temperature and humidity of a tropical premontane rain forest tree in Costa Rica. Selbyana 18:77–84

    Google Scholar 

  • Gaines SD, Roughgarden J (1987) Fish in offshore kelp forests affect recruitment to intertidal barnacle populations. Science 235:479–481

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Mechling M, Castenholz RW (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl Environ Microbiol 60:1500–1511

    PubMed  CAS  Google Scholar 

  • Gauslaa Y (1995) The Lobarion, an epiphytic community of ancient forests threatened by acid rain. Lichenologist 27:59–76

    Google Scholar 

  • Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171

    Article  PubMed  CAS  Google Scholar 

  • Gebauer R, Martinková M (2005) Structure and functions of the types of Norway spruce (Picea abies [L.] Karst.) roots. J Forest Sci 51:305–311

    Google Scholar 

  • Geiger R (1965) The climate near the ground. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gerard VA (1984) The light environment in a giant kelp forest: influence of Macrocystis pyrifera on spatial and temporal variability. Mar Biol 84:189–194

    Article  Google Scholar 

  • Givnish TJ (1983) Convergent evolution of crown form in woody plants of southwestern Australia and New Caledonia. Am Phil Soc Yearb 1983:136

    Google Scholar 

  • Givnish TJ (1984) Leaf and canopy adaptations in tropical forests. In: Medina E, Mooney HA, Vásquez-Yánes C (eds) Physiological ecology of plants of the wet tropics. Dr. Junk, The Hague

    Google Scholar 

  • Givnish TJ (1995) Plant stems: biomechanical adaptation for energy capture and influence on species distributions. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Chapman and Hall, New York

    Google Scholar 

  • Graham NAJ, Nash KL (2012) The importance of structural complexity in coral reef ecosystems. Coral Reefs. doi:10.1007/s00338-012-0984-y

    Google Scholar 

  • Graham NAJ, Wilson SK, Pratchett MS, Polunin NVC, Spalding MD (2009) Coral mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodivers Conserv 18:3325–3336

    Article  Google Scholar 

  • Guerrero R, Mas J (1989) Multilayered microbial communities in aquatic ecosystems: growth and loss factors. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Guerrero R, Piqueras M, Berlanga M (2002) Microbial mats and the search for minimal ecosystems. Int Microbiol 5:177–188

    Article  PubMed  CAS  Google Scholar 

  • Haack TK, McFeters GA (1982) Nutritional relationships among microorganisms in an epilithic biofilm community. Microb Ecol 8:115–126

    Article  CAS  Google Scholar 

  • Hacker SD, Steneck RS (1990) Habitat architecture and the abundance and body-size-dependent habitat selection of a phytal amphipod. Ecology 71:2269–2285

    Article  Google Scholar 

  • Hackney JM, Carpenter RC, Adey WH (1989) Characteristic adaptations to grazing among algal turfs on a Caribbean coral reef. Phycologia 28:109–119

    Article  Google Scholar 

  • Haila Y (1990) Toward an ecological definition of an island: a northwest European perspective. J Biogeogr 17:561–568

    Article  Google Scholar 

  • Hallé F (1990) Tropical rain forests: structure and growth dynamics relative to utilization by birds. In: Keast A (ed) Biogeography and ecology of forest bird communities. SPB Academic, The Hague

    Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Book  Google Scholar 

  • Hallingbäck T (1990) Transplanting Lobaria pulmonaria to new localities and a review on the transplanting of lichens. Windahlia 18:57–64

    Google Scholar 

  • Hamrick MW (1998) Functional and adaptive significance of primate pads and claws: evidence from New World anthropoids. Am J Phys Anthropol 106:113–127

    Article  PubMed  CAS  Google Scholar 

  • Hansen SK, Rainey PB, Haagensen JA, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536

    Article  PubMed  CAS  Google Scholar 

  • Hay ME (1986) Functional geometry of seaweeds: ecological consequences of thallus layering and shape in contrasting light environments. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Heck KL Jr, Wetstone GS (1977) Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. J Biogeogr 4:135–142

    Article  Google Scholar 

  • Herwitz SR, Slye RE (1992) Spatial variability in the interception of inclined rainfall by a tropical rainforest canopy. Selbyana 13:62–71

    Google Scholar 

  • Hill WR (1996) Effects of light. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, New York

    Google Scholar 

  • Hill JL, Hill RA (2001) Why are tropical rain forests so species rich? Classifying, reviewing and evaluating theories. Prog Phys Geogr 25:326–354

    Google Scholar 

  • Hillebrand H, Frost P, Liess A (2008) Ecological stoichiometry of indirect grazer effects on periphyton nutrient content. Oecologia 155:619–630

    Article  PubMed  Google Scholar 

  • Hirose T, Werger MJA (1995) Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology 76:466–474

    Article  Google Scholar 

  • Hoagland KD, Roemer SC, Rosowski JR (1982) Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am J Bot 69:188–213

    Article  Google Scholar 

  • Hodoki Y (2005) Bacteria biofilm encourages algal immigration onto substrata in lotic systems. Hydrobiologia 539:27–34

    Article  Google Scholar 

  • Holbrook NM (1995) Stem water storage. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Chapman and Hall, New York

    Google Scholar 

  • Holbrook SJ, Denny MW, Koehl MAR (1991) Intertidal “trees”:consequences of aggregation on the mechanical and photosynthetic properties of sea-palms Postelsia palmaeformis Ruprecht. J Exp Mar Biol Ecol 146:39–67

    Article  Google Scholar 

  • Holbrook SJ, Brooks AJ, Schmitt RJ (2003) Variation in structural attributes of patch–forming corals and in patterns of abundance of associated fishes. Mar Freshw Res 53:1045–1053

    Article  Google Scholar 

  • Hölldobler B, Lumsden CJ (1980) Territorial strategies in ants. Science 210:732–739

    Article  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1977) Weaver ants: social establishment and maintenance of territory. Science 195:900–902

    Article  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Horn H (1971) The adaptive geometry of trees. Princeton University Press, Princeton

    Google Scholar 

  • Hudon C, Bourget E (1983) The effect of light on the vertical structure of epibenthic diatom communities. Bot Mar 26:317–330

    Article  Google Scholar 

  • Hull DL (1988) Science as a process. University of Chicago Press, Chicago

    Google Scholar 

  • Hurby T (1976) Observations of algal zonation resulting from competition. Estuar Coast Mar Sci 4:231–233

    Article  Google Scholar 

  • Hutchings MJ, De Kroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238

    Article  Google Scholar 

  • Hyvärinen M, Halonen P, Kauppi M (1992) Influence of stand age and structure on the epiphytic lichen vegetation in the middle–boreal forests of Finland. Lichenologist 24:165–180

    Google Scholar 

  • Ingram SW, Nadkarni NM (1993) Composition and distribution of epiphytic organic matter in a neotropical cloud forest, Costa Rica. Biotropica 25:370–383

    Article  Google Scholar 

  • Irie Y, Parsek MR (2008) Quorum sensing and microbial biofilms. Curr Top Microbiol Immunol 322:67–84

    Article  PubMed  CAS  Google Scholar 

  • Irving AD, Connell SD (2006) Predicting understorey structure from the presence and composition of canopies: an assembly rule for marine algae. Oecologia 148:491–502

    Article  PubMed  Google Scholar 

  • Jackson CR (2003) Changes in community properties during microbial succession. Oikos 101:444–448

    Article  Google Scholar 

  • Jackson JBC, Goreau TF, Hartman WD (1971) Recent brachiopod-coralline sponge communities and their paleoecological significance. Science 173:623–625

    Article  PubMed  CAS  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jander R (1990) Arboreal search in ants: search on branches (Hymenoptera: Formicidae). J Insect Behav 3:515–527

    Article  Google Scholar 

  • Jander R, Voss C (1963) Die Bedeutung von Streifenmustern fuer das Formensehen der Roten Waldameise (Formica rufa L.). Z Tierpsychol 20:1–9

    Google Scholar 

  • Janzen DH (1968) Host plants as islands in evolutionary and contemporary time. Am Nat 102:592–595

    Article  Google Scholar 

  • Janzen DH (1973) Host plants as islands. II. Competition in evolutionary and contemporary time. Am Nat 107:786–790

    Article  Google Scholar 

  • Jeník J (1978) Roots and root systems in tropical trees. In: Tomlinson PB, Zimmerman MH (eds) Tropical trees as living systems. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jenkins B, Kitching RL (1990) The ecology of water-filled treeholes in Australian rainforests: food web reassembly as a measure of community recovery. Aust J Ecol 15:199–205

    Article  Google Scholar 

  • Johansen JL, Bellwood DR, Fulton CJ (2008) Coral reef fishes exploit flow refuges in high–flow habitats. Mar Ecol Prog Ser 360:219–226

    Article  Google Scholar 

  • Johnson RE, Tuchman NC, Peterson CG (1997) Changes in the vertical microdistribution of diatoms within a developing periphyton mat. J N Am Benthol Soc 16:503–519

    Article  Google Scholar 

  • Jones GP (1992) Interactions between herbivorous fishes and macro–algae on a temperate rocky reef. J Exp Mar Biol Ecol 159:217–235

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28:1075–1093

    Article  Google Scholar 

  • Jørgensen BB, Revsbech NP, Blackburn TH, Cohen Y (1979) Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Appl Environ Microbiol 38:46–58

    PubMed  Google Scholar 

  • Jørgensen BB, Cohen Y, Revsbech NP (1986) Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat. Appl Environ Microbiol 51:408–417

    PubMed  Google Scholar 

  • Judd WS, Sanders RW, Donoghue MWJ (1994) Angiosperm family pairs: preliminary phylogenetic analyses. Harv Pap Bot 5:1–51

    Google Scholar 

  • Karlson RH (1999) Dynamics of coral communities. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Kastendiek J (1982) Competitor-mediated coexistence: interactions among three species of benthic macroalgae. J Exp Mar Biol Ecol 62:201–210

    Article  Google Scholar 

  • Kesanakurti PR, Fazekas AJ, Burgess KS, Percy DM, Newmaster SG, Graham SW, Barrett SCH, Hajibabaei M, Husband BC (2011) Spatial patterns of plant diversity below-ground as revealed by DNA barcoding. Mol Ecol 20:1289–1302

    Article  PubMed  Google Scholar 

  • Kierek-Pearson K, Karatan E (2005) Biofilm development in bacteria. Adv Appl Microbiol 57:79–111

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Peres JM (1977) Consumer ecology of seagrass beds. In: McRoy CP, Helfferich C (eds) Seagrass ecosystems. Marcel Dekker, New York

    Google Scholar 

  • Kim S, Soltis DE, Soltis PS, Zanis MJ, Suh Y (2004) Phylogenetic relationships among early-diverging eudicots based on four genes: were the eudicots ancestrally woody? Mol Phylogenet Evol 31:16–30

    Article  PubMed  CAS  Google Scholar 

  • Kitching JA, Macan TT, Gilson HC (1934) Studies in sublittoral ecology. I. A submarine gully in Wembury Bay, South Devon. J Mar Biol Assoc UK 19:677–705

    Article  Google Scholar 

  • Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68

    Article  PubMed  CAS  Google Scholar 

  • Klotz JH, Reid BL (1992) The use of spatial cues for structural guideline orientation in Tapinoma sessile and Camponotus pennsylvanicus. J Insect Behav 5:71–82

    Article  Google Scholar 

  • Korber DR, Lawrence JR, Lappin-Scott HM, Costerton JW (1995) Growth of microorganisms on surfaces. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, UK

    Chapter  Google Scholar 

  • Korte VL, Blinn DW (1983) Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy. J Phycol 19:332–341

    Article  Google Scholar 

  • Kricher J (1997) A neotropical companion. Princeton University Press, Princeton

    Google Scholar 

  • Kuenen JG, Jørgensen BB, Revsbech NP (1986) Oxygen microprofiles of trickling filter biofilms. Water Res 20:1589–1598

    Article  CAS  Google Scholar 

  • Kühl M, Polerecky L (2008) Functional and structural imaging of phototrophic microbial communities and symbioses. Aquat Microb Ecol 53:99–118

    Article  Google Scholar 

  • Kühl M, Fenchel T (2000) Bio-optical characteristics and the vertical distribution of photosynthetic pigments and photosynthesis in an artificial cyanobacterial mat. Microb Ecol 40:94–103

    Article  Google Scholar 

  • Kühl M, Glud RN, Ploug H, Ramsing NB (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32:799–812

    Article  Google Scholar 

  • Kühl M, Fenchel T, Kazmierczak J (2003) Growth, structure and calcification potential of an artificial cyanobacterial mat. In: Krumbein WE, Paterson D, Zavarzin G (eds) Fossil and recent biofilms, a natural history of life on Earth. Kluwer Academic, Dordrecht

    Google Scholar 

  • Külla T, Lõhmus K (1999) Influence of cultivation method on root grafting in Norway spruce (Picea abies (L.) Karst). Plant Soil 217:91–100

    Article  Google Scholar 

  • Lakoff G (1987) Women, fire, and dangerous things: what categories reveal about the mind. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Langdale JA (2008) Evolution of developmental mechanisms in plants. Cur Opin Genet Develop 18:368–373

    Article  CAS  Google Scholar 

  • Lassen C, Ploug H, Kühl M, Jørgensen BB (1994) Oxygenic photosynthesis and light distribution in marine microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development, and environmental significance. Springer, Berlin

    Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    PubMed  CAS  Google Scholar 

  • Lawrence JR, Korber DR, Wolfaardt GM, Caldwell DE (1995) Behavioral strategies of surface–colonizing bacteria. Adv Microb Ecol 14:1–75

    Article  Google Scholar 

  • Lawrence JR, Swerhone GDW, Kuhlicke U, Neu TR (2007) In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol 53:450–458

    Article  PubMed  CAS  Google Scholar 

  • Lawton, JH (1983) Plant architecture and the diversity of phytophagous insects. Ann Rev Entomol 28:23–29

    Article  PubMed  CAS  Google Scholar 

  • Leigh EG Jr (1999) Tropical forest ecology: a view from Barro Colorado Island. Oxford University Press, Oxford, UK

    Google Scholar 

  • Levin PS, Hay ME (1996) Responses of temperate reef fishes to alterations in algal structure and species composition. Mar Ecol Prog Ser 134:37–47

    Article  Google Scholar 

  • Lieberman M, Lieberman D, Peralta R (1989) Forests are not just swiss cheese: canopy stereogeometry of non-gaps in tropical forests. Ecology 70:550–552

    Article  Google Scholar 

  • Liira J, Zobel K, Mägi R, Molenberghs G (2002) Vertical structure of herbaceous canopies: the importance of plant growth–form and species–specific traits. Plant Ecol 163:123–134

    Article  Google Scholar 

  • Lindo Z, Whiteley JA (2011) Old trees contribute bio–available nitrogen through canopy bryophytes. Plant Soil 342:141–148

    Article  CAS  Google Scholar 

  • Losos JB (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. University of California Press, Berkeley

    Google Scholar 

  • Lovett GM, Lindberg SE (1992) Concentration and deposition of particles and vapors in a vertical profile through a forest canopy. Atmos Environ 26A:1469–1476

    CAS  Google Scholar 

  • Lowe RL, Guckert JB, Belanger SE, Davidson DH, Johnson DW (1996) An evaluation of periphyton community structure and function on tile and cobble substrata in experimental stream mesocosms. Hydrobiologia 328:135–146

    Article  Google Scholar 

  • Lowe RL, Shavit U, Falter JL, Koseff JR, Monismith SG (2008) Modeling flow in coral communities with and without waves: a synthesis of porous media and canopy flow approaches. Limnol Oceanogr 53:2668–2680

    Article  Google Scholar 

  • Lyford WH (1975) Rhizography of non-woody roots of trees in the forest floor. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic, New York

    Google Scholar 

  • Lynch JP, Nielsen KL, Davis RD, Jablokow AG (1997) SimRoot: modelling and visualization of root systems. Plant Soil 188:139–151

    Article  Google Scholar 

  • MacArthur R, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • MacArthur R, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow–water marine habitats. I. Distribution, abundance and primary production. Estuaries 19:186–201

    Article  Google Scholar 

  • Madsen JS, Burmølle M, Hansen LH, Sørensen SJ (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immu Med Microbiol 65:183–195

    Article  CAS  Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distributions of two mojave desert shrubs. Ecology 73:2145–2151

    Article  Google Scholar 

  • Maida M, Coll JC, Sammarco PW (1994) Shedding new light on scleractinian coral recruitment. J Exp Mar Biol Ecol 180:189–202

    Article  Google Scholar 

  • Maraun M, Alphei J, Bonkowski M, Buryn R, Migge S, Peter M, Schaefer M, Scheu S (1999) Middens of the earthworm Lumbricus terrestris (Lumbricidae): microhabitats for micro- and mesofauna in forest soil. Pedobiologia 43:276–286

    Google Scholar 

  • Marks JC, Power ME (2001) Nutrient induced changes in the species composition of epiphytes on Cladophora glomerata Kütz. Hydrobiologia 450:187–196

    Article  Google Scholar 

  • Massol-Deyá AA, Whallon J, Hickey RF, Tiedje JM (1995) Channel structures in aerobic biofilms of fixed–film reactors treating contaminated groundwater. Appl Environ Microbiol 61:769–777

    PubMed  Google Scholar 

  • McCormick PV (1996) Resource competition and species coexistence in freshwater benthic algal assemblages. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, New York

    Article  Google Scholar 

  • McCormick PV, Stevenson RJ (1991) Grazer control of nutrient availability in the periphyton. Oecologia 86:287–291

    Article  Google Scholar 

  • McCune B (1993) Gradients in epiphyte biomass in three PseudotsugaTsuga forests of different ages in western Oregon and Washington. Bryologist 96:405–411

    Article  Google Scholar 

  • McCune B, Antos JA (1981) Diversity relationships of forest layers in the Swan Valley, Montana. Bull Torrey Bot Club 108:354–361

    Article  Google Scholar 

  • McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. Forest Ecol Manag 218:1–24

    Article  Google Scholar 

  • McGraw WS (1998) Posture and support use of Old World monkeys (Cercopithecidae):the influence of foraging strategies, activity patterns, and the spatial distribution of preferred food items. Am J Primatol 46:229–250

    Article  PubMed  CAS  Google Scholar 

  • Meulemans JT, Roos PJ (1985) Structure and architecture of the periphytic community on dead reed stems in Lake Maarsseveen. Arch Hydrobiol 102:487–502

    CAS  Google Scholar 

  • Meyers TP, Huebert BJ, Hicks BB (1989) HNO3 deposition to a deciduous forest. Boundary-Layer Meteorol 49:395–410

    Article  Google Scholar 

  • Miller AR, Lowe RL, Rotenberry JT (1987) Succession of diatom communities on sand grains. J Ecol 75:693–709

    Article  Google Scholar 

  • Miller RJ, Reed DC, Brzezinski MA (2011) Partitioning of primary production among giant kelp (Macrocystis pyrifera), understory macroalgae, and phytoplankton on a temperate reef. Limnol Oceanogr 56:119–132

    Article  Google Scholar 

  • Mitri S, Xavier JB, Foster KR (2011) Social evolution in multispecies biofilms. Proc Nat Acad Sci 108:10839–10846

    Article  PubMed  CAS  Google Scholar 

  • Moe B, Botnen A (1997) A quantitative study of the epiphytic vegetation on pollarded trunks of Fraxinus excelsior at Havrå, Osterøy, western Norway. Plant Ecol 129:157–177

    Article  Google Scholar 

  • Moffett MW (1994) The high frontier: exploring the tropical rainforest canopy. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Moffett MW (1999) Life on vegetation: a framework for canopy biology. In: Hallé F (ed) Biologie d’une canopée de forêt équatoriale –– IV. Pro–Natura and Opération Canopée, Montpellier, France

    Google Scholar 

  • Moffett MW (2000) What’s “up?” A critical look at the basic terms of canopy biology. Biotropica 32:569–596

    Article  Google Scholar 

  • Moffett MW (2001) The nature and limits of canopy biology. Selbyana 22:155–179

    Google Scholar 

  • Moffett MW (2002) The highs and lows of tropical forest canopies. J Biogeogr 29:1264–1265

    Article  Google Scholar 

  • Moffett MW (2010) Adventures among ants. University of California Press, Berkeley

    Google Scholar 

  • Moffett MW, Lowman MD (1995) Canopy access techniques. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic, San Diego

    Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  PubMed  CAS  Google Scholar 

  • Molin S, Nielsen AT, Christensen BB, Andersen JB, Licht TR, Tolker-Nielsen T, Sternberg C, Hansen MC, Ramos C, Givskov M (2000) Molecular ecology of biofilms. In: Bryers JD (ed) Biofilms II: process analysis and applications. Wiley-Liss, New York

    Google Scholar 

  • Mommer L, van Ruijven J, de Caluwe H, Smit-Tiekstra AE, Wagemaker CAM, Ouborg NJ, Bogemann GM, van der Weerden GM, Berendse F, de Kroon H (2010) Unveiling below–ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. J Ecol 98:1117–1127

    Article  Google Scholar 

  • Mommer L, Dumbrell AJ, Wagemaker CAM, Ouborg NJ (2011) Belowground DNA–based techniques: untangling the network of plant root interactions. Plant Soil 348:115–121

    Article  CAS  Google Scholar 

  • Monteith JL (1975/1976) Vegetation and the atmosphere, vol 1 and 2. Academic, London

    Google Scholar 

  • Montgomery RA, Chazdon RL (2001) Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82:2707–2718

    Article  Google Scholar 

  • Moore JC, McCann K, Setälä H, de Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Article  Google Scholar 

  • Morin PJ (2000) Biodiversity’s ups and downs. Nature 406:463–464

    Article  PubMed  CAS  Google Scholar 

  • Morris CE, Monier JM, Jacques MA (1997) Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol 63:1570–1576

    PubMed  CAS  Google Scholar 

  • Mulholland PJ (1996) Role in nutrient cycling in streams. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, New York

    Google Scholar 

  • Mundy CN, Babcock RC (1998) Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement? J Exp Mar Biol Ecol 223:235–255

    Article  Google Scholar 

  • Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14

    Article  PubMed  CAS  Google Scholar 

  • Neushul M (1971) Submarine illumination in Macrocystis beds. Beihefte zur Nova Hedwigia 32:241–254

    Google Scholar 

  • Neushul M (1972) Functional interpretation of benthic marine algal morphology. In: Abbott IA, Kurogi M (eds) Contributions to the systematics of benthic marine algae of the North Pacific. Japanese Society of Phycology, Kobe

    Google Scholar 

  • Niklas KJ (1997) Evolutionary biology of plants. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (2000) The mechanical stability of vertical stems. In: Kurmann MH, Hemsley AR (eds) The evolution of plant architecture. Royal Botanical Gardens, Kew

    Google Scholar 

  • Niklas KJ, Kerchner V (1984) Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology 10:79–101

    Google Scholar 

  • O’ Connell T, Bolger T (1997) Fungal fruiting bodies and the structure of fungus-micro-arthropod assemblages. Proc R Irish Acad Sect B 97:249–262

    Google Scholar 

  • Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial–bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2:11–26

    Article  PubMed  CAS  Google Scholar 

  • Pagès L (2000) How to include organ interactions in models of the root system architecture? The concept of endogenous environment. Ann For Sci 57:535–541

    Article  Google Scholar 

  • Pagès L, Doussan C, Vercambre G (2000) An introduction on below–ground environment and resource acquisition, with special reference on trees: simulation models should include plant structure and function. Ann For Sci 57:513–520

    Article  Google Scholar 

  • Paine RT, Suchanek TH (1983) Convergence of ecological processes between independently evolved competitive dominants: a tunicate–mussel comparison. Evolution 37:821–831

    Article  Google Scholar 

  • Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133

    Article  Google Scholar 

  • Parker GG, Brown MJ (2000) Forest canopy stratification –– is it useful? Am Nat 155:473–484

    Article  PubMed  Google Scholar 

  • Passy SI, Larson CA (2011) Succession in stream biofilms is an environmentally driven gradient of stress tolerance. Microb Ecol 62:414–424

    Article  PubMed  CAS  Google Scholar 

  • Pearce D, Bazin MJ, Lynch JM (1995) The rhizosphere as a biofilm. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Pearse JS, Hines AH (1979) Expansion of a central California kelp forest following the mass mortality of sea urchins. Mar Biol 51:83–91

    Article  Google Scholar 

  • Perry DR (1978) Factors influencing arboreal epiphytic phytosociology in Central America. Biotropica 10:235–237

    Article  Google Scholar 

  • Peterson CG (1996) Response of benthic algal communities to natural physical disturbance. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego

    Google Scholar 

  • Peterson CG, Grimm NB (1992) Temporal variation in enrichment effects during periphyton succession in a nitrogen–limited desert stream ecosystem. J N Am Benthol Soc 11:20–36

    Article  Google Scholar 

  • Pike LH (1978) The importance of epiphytic lichens in mineral cycling. Bryologist 81:247–257

    Article  Google Scholar 

  • Pogoreutz C, Kneer D, Litaay M, Asmus H, Ahnelt H (2012) The influence of canopy structure and tidal level on fish assemblages in tropical Southeast Asian seagrass meadows. Estuar Coast Shelf Sci 107:58–68

    Article  Google Scholar 

  • Poorter L, Hawthorne W, Bongers F, Sheil D (2008) Maximum size distributions in tropical forest communities: relationships with rainfall and disturbance. J Ecol 96:495–504

    Article  Google Scholar 

  • Poorter L, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  PubMed  CAS  Google Scholar 

  • Porter JW (1974) Zooplankton feeding by the Caribbean reef-building coral Montastrea cavernosa. Proc Second Int Coral Reef Symp 1:111–125

    Google Scholar 

  • Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am Nat 110:731–742

    Article  Google Scholar 

  • Postma JA, Lynch JP (2012) Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. Ann Bot 110:521–534

    Article  PubMed  CAS  Google Scholar 

  • Povinelli DJ, Cant JGH (1995) Arboreal clambering and the evolution of self–conception. Quart Rev Biol 70:393–421

    Article  PubMed  CAS  Google Scholar 

  • Pringle CM (1985) Effects of chironomid (Insecta: Diptera) tube-dwelling activities on stream diatom communities. J Phycol 21:185–194

    Article  Google Scholar 

  • Putz FE (1995) Vines in treetops: consequences of mechanical dependence. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic, San Diego

    Google Scholar 

  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35:340–355

    Article  PubMed  CAS  Google Scholar 

  • Ramsing NB, Kühl M, Jørgensen BB (1993) Distribution of sulfate–reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59:3840–3849

    PubMed  CAS  Google Scholar 

  • Ramsing NB, Ferris MJ, Ward DM (2000) Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Appl Environ Microbiol 66:1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Randlkofer B, Obermaier E, Hilker M, Meiners T (2010) Vegetation complexity: the influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic Appl Ecol 11:383–395

    Article  CAS  Google Scholar 

  • Rasmussen L (1975) The bryophytic epiphyte vegetation in the forest, Slotved Skov, Northern Jutland. Lindbergia 3:15–38

    Google Scholar 

  • Reed DC, Foster MS (1984) The effects of canopy shadings on algal recruitment and growth in a giant kelp forest. Ecology 65:937–948

    Article  Google Scholar 

  • Reichenbach H (1951) The rise of scientific philosophy. University of California Press, Berkeley

    Google Scholar 

  • Reiners WA, Olson RK (1984) Effects of canopy components on throughfall chemistry: an experimental analysis. Oecologia 63:320–330

    Article  Google Scholar 

  • Reynolds TB, Fink GR (2001) Baker’s yeast, a model for fungal biofilm formation. Science 291:878–881

    Article  PubMed  CAS  Google Scholar 

  • Richards AJ (1986) Plant breeding systems. George Allen and Unwin, London

    Google Scholar 

  • Richards PW (1996) The tropical rain forest, an ecological study, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Richardson BA (1999) The bromeliad microcosm and the assessment of faunal diversity in a neotropical forest. Biotropica 31:321–336

    Article  Google Scholar 

  • Robinson CT, Minshall GW (1986) Effects of disturbance frequency on stream benthic community structure in relation to canopy cover and season. J N Am Benthol Soc 5:237–248

    Article  Google Scholar 

  • Roemer SC, Hoagland KD, Rosowski JR (1984) Development of a freshwater periphyton community as influenced by diatom mucilages. Can J Bot 62:1799–1813

    Article  Google Scholar 

  • Roeselers G, van Loosdrecht MCM, Muyzer G (2007) Heterotrophic pioneers facilitate phototrophic biofilm development. Microbial Ecol 54:578–585

    Article  CAS  Google Scholar 

  • Roos PJ (1979) Architecture and development of periphyton on reed-stems in Lake Maarsseveen. Hydrobiol Bull 13:117

    Article  Google Scholar 

  • Roxburgh SH, Watkins AJ, Wilson JB (1993) Lawns have vertical stratification. J Veg Sci 4:699–704

    Article  Google Scholar 

  • Ruinen J (1961) The phyllosphere. I. An ecologically neglected milieu. Plant Soil 15:81–109

    Article  Google Scholar 

  • Ruinen J (1975) Nitrogen fixation in the phyllosphere. In: Stewart WDP (ed) Nitrogen fixation by free–living micro–organisms. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Rupp CJ, Fux CA, Stoodley P (2005) Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 71:2175–2178

    Article  PubMed  CAS  Google Scholar 

  • Russell BC (1977) Population and standing crop estimates for rocky reef fishes of North–Eastern New Zealand. N Z J Mar Freshw Res 11:23–36

    Article  Google Scholar 

  • Russell BD (2007) Effects of canopy-mediated abrasion and water flow on the early colonisation of turf-forming algae. Mar Freshw Res 58:657–665

    Article  Google Scholar 

  • Russell G, Marshall B, Jarvis PG (eds) (1989) Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Sagan D, Margulis L (1988) Garden of microbial delights. Harcourt Brace Jovanovich, Boston

    Google Scholar 

  • Santelices B, Ojeda FP (1984) Effects of canopy removal on the understory algal community structure of coastal forests of Macrocystis pyrifera from southern South America. Mar Ecol Prog Ser 14:165–173

    Article  Google Scholar 

  • Schaefer DA, Reiners WA (1989) Throughfall chemistry and canopy processing mechanisms. In: Lindberg SE, Page AL, Norton SA (eds) Acidic precipitation. Vol. 3: sources, deposition, and canopy interactions. Springer, New York

    Google Scholar 

  • Schaudinn C, Stoodley P, Kainovic A, O’Keeffe T, Costerton B, Robinson D, Baum M, Ehrlich G, Webster P (2007) Bacterial biofilms, other structures seen as mainstream concepts. Microbe 2:231–237

    Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monog 72:311–328

    Article  Google Scholar 

  • Schmitt RJ, Holbrook SJ (1990) Contrasting effects of giant kelp on dynamics of surfperch populations. Oecologia 84:419–429

    Google Scholar 

  • Schowalter TD (2011) Insect ecology: an ecosystem approach, 3rd edn. Academic, New York

    Google Scholar 

  • Scott JT, Back JA, Taylor JM, King RS (2008) Does nutrient enrichment decouple algal–bacterial production in periphyton? J N Am Benthol Soc 27:332–344

    Article  Google Scholar 

  • Seifert R (1975) Clumps of Heliconia inflorescences as ecological islands. Ecology 56:1416–1422

    Article  Google Scholar 

  • Sekar R, Venugopalan VP, Nandakumar K, Nair KVK, Rao VNR (2004) Early stages of biofilm succession in a lentic freshwater environment. Hydrobiologia 512:97–108

    Article  Google Scholar 

  • Shaw DC (1996) Northwest forest canopies: preface. NW Sci 70:i–ii

    Google Scholar 

  • Shugart HH, Saatchi S, Hall FG (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res 115:G00E13

    Article  Google Scholar 

  • Sillett SC, Gradstein SR, Griffin D (1995) Bryophyte diversity of Ficus tree crowns from cloud forest and pasture in Costa Rica. Bryologist 98:251–260

    Article  Google Scholar 

  • Sinoquet H, Pincebourde S, Adam B, Donès N, Phattaralerphong J, Combes D, Ploquin S, Sangsing K, Kasemsap P, Thanisawanyangkura S, Groussier-Bout G, Casas J (2009) 3-D maps of tree canopy geometries at leaf scale. Ecology 90:283

    Article  Google Scholar 

  • Sládecková A (1962) Limnological investigation methods for the periphyton (“aufwuchs”) community. Bot Rev 28:286–350

    Article  Google Scholar 

  • Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (eds) (2000) Root methods: a handbook. Springer, Berlin

    Google Scholar 

  • Sobczak WV (1996) Epilithic bacterial responses to variations in algal biomass and labile dissolved organic carbon during biofilm colonization. J N Am Benthol Soc 15:143–154

    Article  Google Scholar 

  • Sousa WP (1979) Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol Monogr 49:227–254

    Article  Google Scholar 

  • Spies TA (1998) Forest structure: a key to the ecosystem. N W Sci 72:34–39

    Google Scholar 

  • Staal M, Borisov S, Rickelt LF, Klimant I, Kühl M (2011) Ultrabright planar optodes for luminescence life-time based microscopic imaging of O2 dynamics in biofilms. J Microbiol Methods 85:67–74

    Article  PubMed  CAS  Google Scholar 

  • Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria. Kluwer Academic, Dordrecht

    Google Scholar 

  • Steele MA (1999) Effects of shelter and predators on reef fishes. J Exp Mar Biol Ecol 233:65–79

    Article  Google Scholar 

  • Steneck RS (1997) Crustose corallines, other algal functional groups, herbivores and sediments: complex interactions along reef productivity gradients. In: Proceedings of 8th international coral reef symposium, Panama City 1:695–700

    Google Scholar 

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal–dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  • Sterck FJ, Schieving F (2007) 3-D growth patterns of trees: effects of carbon economy, meristem activity, and selection. Ecol Monog 77:405–420

    Article  Google Scholar 

  • Sterck FJ, Bongers F, During HJ, Martínez-Ramos M, de Kroon H (2003) Module responses in a tropical forest tree analyzed with a matrix model. Ecology 84:2751–2761

    Article  Google Scholar 

  • Stevenson RJ (1983) Effects of current and conditions simulating autogenically changing microhabitats on benthic diatom immigration. Ecology 64:1514–1524

    Article  Google Scholar 

  • Stevenson RJ (1996) An introduction to algal ecology in freshwater benthic habitats. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, New York

    Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–2010

    Article  PubMed  CAS  Google Scholar 

  • Stimson J (1985) The effect of shading by the table coral Acropora hyacinthus on understory corals. Ecology 66:40–53

    Article  Google Scholar 

  • Stock MS, Ward AK (1991) Blue–green algal mats in a small stream. J Phycol 27:692–698

    Article  Google Scholar 

  • Stolzenbach KD (1989) Particle transport and attachment. In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms. Wiley, New York

    Google Scholar 

  • Stoodley P, Boyle JD, DeBeer D, Lappin-Scott HM (1999a) Evolving perspectives of biofilm structure. Biofouling 14:75–90

    Article  Google Scholar 

  • Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999b) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microb 1:447–455

    Article  CAS  Google Scholar 

  • Stork NE, Adis J, Didham RK (1997) Canopy arthropods. Chapman and Hall, London

    Google Scholar 

  • Svenning J-C (2000) Small canopy gaps influence plant distributions in the rain forest understory. Biotropica 32:252–261

    Google Scholar 

  • Teske A, Stahl DA (2001) Microbial mats and biofilms: evolution, structure and function of fixed microbial communities. In: Staley JT, Reysenbach A-L (eds) Biodiversity of microbial life: foundation of earth’s biosphere. Wiley, New York

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tomlinson PB (1983) Tree architecture. Am Sci 71:141–149

    PubMed  CAS  Google Scholar 

  • Tsegaye T, Mullins CE, Diggle AJ (1995a) An experimental procedure for obtaining input parameters for the rootmap root simulation program for peas (Pisum sativum L). Plant Soil 172:1–16

    Article  CAS  Google Scholar 

  • Tsegaye T, Mullins CE, Diggle AJ (1995b) Modeling pea (Pisum sativum) root growth in drying soil: a comparison between observations and model predictions. New Phytol 131:179–189

    Google Scholar 

  • Tuchman NC (1996) The role of heterotrophy in algae. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, New York

    Article  Google Scholar 

  • Tuchman NC, Stevenson RJ (1991) Effects of selective grazing by snails on benthic algal succession. J N Am Benthol Soc 10:430–443

    Article  Google Scholar 

  • Turner JS (2000) The extended organism: the physiology of animal-built structures. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Vadas RL, Steneck RS (1988) Zonation of deep water benthic algae in the Gulf of Maine. J Phycol 24:338–346

    Google Scholar 

  • Van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Article  Google Scholar 

  • Van Gemerden H (1993) Microbial mats, a joint venture. Mar Geol 113:3–25

    Article  Google Scholar 

  • Venugopalan VP, Kuehn M, Hausner M, Springael D, Wilderer PA, Wuertz S (2005) Architecture of a nascent Sphingomonas sp. biofilm under varied hydrodynamic conditions. Appl Environ Microbiol 71:2677–2686

    Article  PubMed  CAS  Google Scholar 

  • Vogel S (1996) Blowing in the wind: storm-resisting features of the design of trees. J Arboriculture 22:92–98

    Article  PubMed  CAS  Google Scholar 

  • Vytopil E, Willis B (2001) Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20:281–288

    Article  Google Scholar 

  • Wahl M (1997) Living attached: aufwuchs, fouling, epibiosis. In: Nagabhushanam R, Thompson M-F (eds) Fouling organisms of the Indian Ocean. A.A. Balkema, Rotterdam

    Google Scholar 

  • Walla TR, Engen S, DeVries PJ, Lande R (2004) Modeling vertical beta–diversity in tropical butterfly communities. Oikos 107:610–618

    Article  Google Scholar 

  • Walter H (1973) Vegetation on earth. Springer, New York

    Google Scholar 

  • Ward DM, Bateson MM, Ferris MJ, Kühl M, Wieland A, Koeppel A, Cohan FM (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species–like units linking microbial community composition, structure and function. Philos Trans R Soc B 361:1997–2008

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    Article  PubMed  CAS  Google Scholar 

  • Weaver JE, Clements FE (1929) Plant ecology. McGraw-Hill, New York

    Google Scholar 

  • Wernberg T, Kendrick GA, Toohey BD (2005) Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquat Ecol 39:419–430

    Article  Google Scholar 

  • Weitzel RG (1979) Periphyton measurements and applications. In: Weitzel RG (ed) Methods and measurements of periphyton communities: a review. American Society for Testing and Materials, Philadelphia

    Chapter  Google Scholar 

  • Wetzel RG (1983) Opening remarks. In: Wetzel RG (ed) Periphyton of freshwater ecosystems. Dr. W. Junk, The Hague

    Chapter  Google Scholar 

  • Wetzel RG (1993) Microcommunities and microgradients: linking nutrient regeneration, microbial mutualism, and high sustained aquatic primary production. Neth J Aquat Ecol 27:3–9

    Article  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bendin GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    Article  PubMed  CAS  Google Scholar 

  • Williams SL, Carpenter RC (1990) Photosynthesis/photon flux density relationships among components of coral reef algal turfs. J Phycol 26:36–40

    Article  Google Scholar 

  • Williams SL, Heck KL Jr (2001) Seagrass Community ecology. In: Bertness M, Gaines S, Hay M (eds) Marine community ecology. Sinauer Press, New York

    Google Scholar 

  • Williams GA, Seed R (1992) Interactions between macrofaunal epiphytes and their host algae. In: John DM, Hawkins SJ, Price JH (eds) Plant–animal interactions in the marine benthos. Clarendon, Oxford, UK

    Google Scholar 

  • Wilson JB, Steel JB, Steel SLK (2007a) Do plants ever compete for space? Folia Geobotanica 42:431–436

    Article  Google Scholar 

  • Wilson SK, Graham NAJ, Polunin NVC (2007b) Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar Biol 151:1069–1076

    Article  Google Scholar 

  • Wiman BLB, Agren GI, Lannefors HO (1985) Aerosol concentration profiles within a mature coniferous forest–model versus field results. Atmos Environ 19:363–367

    Article  CAS  Google Scholar 

  • Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22:1–16

    Article  CAS  Google Scholar 

  • Wimpenny JWT, Kinniment SL (1995) Biochemical reactions and the establishment of gradients within biofilms. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wing SR, Leichter JJ, Denny MW (1993) A dynamic model for wave–induced light fluctuations in a kelp forest. Limnol Oceanogr 38:396–407

    Article  Google Scholar 

  • Wohlgemuth S, Ronacher B, Wehner R (2001) Ant odometry in the third dimension. Nature 411:795–798

    Article  PubMed  CAS  Google Scholar 

  • Yeh P-Z, Gibor A (1970) Growth patterns and motility of Spirogyra sp. and Closterium acerosum. J Phycol 6:44–48

    Google Scholar 

  • Young JW (2009) Substrate determines asymmetrical gait dynamics in marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri boliviensis). Am J Phys Anthropol 138:403–420

    Article  PubMed  Google Scholar 

  • Young TP, Isbell LA (1991) Sex differences in giraffe feeding ecology: energetic and social constraints. Ethology 87:79–89

    Article  Google Scholar 

  • Zotz G (2006) Substrate use of three epiphytic bromeliads. Ecography 20:264–270

    Article  Google Scholar 

Download references

Acknowledgments  

I published Moffett (2001) in an up-and-coming journal for canopy research that unfortunately folded. I thank Margaret (“Meg”) Lowman, who, after I talked about this subject for the 2009 International Canopy Conference in Bangalore, gave me the chance to update the article here, so that it can come before a new audience. Luckily, I was able to contact many of the people who advised me on the first version. Although doubtless I missed a few things, I found that little has been done in the last decade on the issues I raise, except for the burgeoning research on biofilms. For assistance with the philosophy of discipline formation, I thank Mary Catherine Bateson, David L. Hull, Peter Harries-Jones, George Lakoff, Paul Ryan, and Carol Wilder; for thoughts on trees, forests, and the dimensionality of canopies, David Ackerly, Timothy F.H. Allen, Robert G. Bailey, Dennis Baldocchi, Frans Bongers, James H. Brown, Jerome Chave, Joel Clement, Raphael Didham, Brian J. Enquist, Stephen P. Ellner, Thomas J. Givnish, Juan Gouda, Paul G. Jarvis, David King, Steve Lindberg, Richard Law, Orie Loucks, Margaret Lowman, Gary Lovett, Jonathan Majer, Lauri Oksanen, Karl J. Niklas, John M. Norman, Geoffrey Parker, Serguei Ponomarenko, Hank H. Shugart, Jonathan Silvertown, Anthony R.E. Sinclair, Frank Sterck, Steven Sutton, Bastow Wilson, Neville Winchester, and Truman Young; for information on roots, Peter W. Barlow, Jan Čermák, Hans de Kroon, A. Roland Ennos, Lewis Feldman, Roman Gebauer, Robert B. Jackson, Donald R. Kaplan, Takashi Kohyama, Krista Lõhmus, Jonathan Lynch, Liesje Mommer, John Moore, James H. Richards, Wim van der Putten, Fernando Tuya, and Yoav Waisel; and for views on algal, bacterial, coral reef, and other canopies, Mohammad A Al-Najjar, Yves Basset, David Benzing, James D. Bryers, Robert C. Carpenter, the late and great J. William Costerton, Paul Dayton, Dirk de Beer, Phil DeVries, Peg Dirckx, Michael Dolan, David Duggins, Michael Franklin, Elizabeth Gladfelter, Ken Heck, Brian Helmuth, Helmut Hillebrand, Walter R. Hill, Mark Hixon, Bo Barker Jørgensen, Ronald H. Karlson, Mimi Koehl, Michael Kühl, Scott Larned, Steven E. Lindow, Rex L. Lowe, my recently deceased friend Lynn Margulis, Susan Merkel, Peter J. Morin, Cindy Morris, James W. Porter, Jennifer H. Richards, Kenneth P. Sebens, Vaclav Smil, Robert S. Steneck, Valerie Behan-Pelletier, Alice Tangerini, Chantal Vis, Martin Wahl, and Susan L. Williams. Lapses in coverage and logic can be attributed to me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Moffett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moffett, M.W. (2013). Comparative Canopy Biology and the Structure of Ecosystems. In: Lowman, M., Devy, S., Ganesh, T. (eds) Treetops at Risk. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7161-5_3

Download citation

Publish with us

Policies and ethics