Advertisement

The WKB Approximation

  • Brian C. Hall
Chapter
Part of the Graduate Texts in Mathematics book series (GTM, volume 267)

Abstract

The WKB method, named for Gregor Wentzel, Hendrik Kramers, and Léon Brillouin, gives an approximation to the eigenfunctions and eigenvalues of the Hamiltonian operator \(\hat{H}\) in one dimension.

References

  1. [7].
    S. De Bièvre, J.-C. Houard, M. Irac-Astaud, Wave packets localized on closed classical trajectories. In Differential Equations with Applications to Mathematical Physics. Mathematics in Science and Engineering, vol. 192 (Academic, Boston, 1993), pp. 25–32Google Scholar
  2. [8].
    S. Dong, Wave Equations in Higher Dimensions (Springer, New York, 2011)CrossRefzbMATHGoogle Scholar
  3. [23].
    G. Hagedorn, S. Robinson, Bohr–Sommerfeld quantization rules in the semiclassical limit. J. Phys. A 31, 10113–10130 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  4. [26].
    M.V. Karasëv, Connections on Lagrangian submanifolds and some problems in quasiclassical approximation. I. (Russian); translation in J. Soviet Math. 59, 1053–1062 (1992)Google Scholar
  5. [30].
    P. Miller, Applied Asymptotic Analysis (American Mathematical Society, Providence, RI, 2006)zbMATHGoogle Scholar
  6. [31].
    T. Paul, A. Uribe, A construction of quasi-modes using coherent states. Ann. Inst. H. Poincaré Phys. Théor 59, 357–381 (1993)zbMATHMathSciNetGoogle Scholar
  7. [34].
    M. Reed, B. Simon, Methods of Modern Mathematical Physics. Volume I: Functional Analysis, 2nd edn. (Academic, San Diego, 1980). Volume II: Fourier Analysis, Self-Adjointness (Academic, New York, 1975). Volume III: Scattering Theory (Academic, New York, 1979). Volume IV: Analysis of Operators (Academic, New York, 1978)Google Scholar
  8. [42].
    A. Voros, Wentzel–Kramers–Brillouin method in the Bargmann representation. Phys. Rev. A 40(3), 6814–6825 (1989)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Brian C. Hall
    • 1
  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA

Personalised recommendations