Fortified Food Made from Animal Products: From Product Design to Nutritional Intervention

  • José A. G. ArêasEmail author
  • Raquel de Andrade Cardoso-Santiago
  • Regilda Saraiva dos Reis Moreira-Araújo
Part of the Nutrition and Health book series (NH)


The development of a fortified food based on bovine lung as an iron source with the grains chickpea and corn as a matrix is described. This was achieved through texturization by extrusion cooking, which did not affect the original superior bioavailability of iron and resulted in a ready-to-eat product suitable for nutritional intervention to combat anaemia. The product was tested and was highly acceptable and remarkably efficient in decreasing anaemia among school children in poor areas in Brazil. This ready-to-eat product was able to reduce the initial anaemia prevalence from more than 60 % of the examined children to around 11 % after a 2-month intervention and met 30 % of the children’s daily iron needs. This chapter describes the steps involved in this design and the results obtained in the tested population.


Bovine lung Bioavailable iron Enriched food Nutritional intervention Anaemia 





Weight for age


  1. 1.
    Pimentel D, Pimentel M. Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr. 2003;78(3):660S–3.PubMedGoogle Scholar
  2. 2.
    Morand-Fehr P, Boyazoglu J. Present state and future outlook of the small ruminant sector. Small Rum Res. 1999;34(3):175–88.CrossRefGoogle Scholar
  3. 3.
    Cardoso Santiago RA, Moreira-Araújo RSR, Pinto e Silva MEM, Arêas JAG. The potential of extruded chickpea, corn and bovine lung for malnutrition programs. Innov Food Sci Emerg Technol. 2001;2(3):203–9.CrossRefGoogle Scholar
  4. 4.
    Cardoso-Santiago RA, Arêas JAG. Nutritional evaluation of snacks obtained from chickpea and bovine lung blends. Food Chem. 2001;74(1):35–40.CrossRefGoogle Scholar
  5. 5.
    Chavez-Jauregui RN, Cardoso-Santiago RA, Silva MEMPE, Arêas JAG. Acceptability of snacks produced by the extrusion of amaranth and blends of chickpea and bovine lung. Int J Food Sci Technol. 2003;38(7):795–8.CrossRefGoogle Scholar
  6. 6.
    WHO. Iron deficiency anaemia. assessment, prevention and control. A guide for programme managers. UNICEF/UNU/WHO; 2001.Google Scholar
  7. 7.
    WHO. Worldwide prevalence of anaemia 1993–2005. Geneva: World Health Organization; 2008.Google Scholar
  8. 8.
    Stoltzfus R. Research needed to strengthen science and programs for the control of iron deficiency and its consequences in young children. J Nutr. 2008;138(12):2542–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Pizarro CF, Davidsson L. Anemia during pregnancy: influence of mild/moderate/severe anemia on pregnancy outcome. J Brazilian Soc Food Nutr. 2003;25(1):153–80.Google Scholar
  10. 10.
    WHO-UNICEF. Indicators and strategies for iron deficiency and anaemia programs. WHO-UNICEF; 1993.Google Scholar
  11. 11.
    Childs F, Aukett A, Darbyshire P, Ilett S, Livera LN. Dietary education and iron deficiency anaemia in the inner city. Arch Dis Child. 1997;76(2):144–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Garcia-Casal MN, Layrisse M. Food iron absorption. Role of vitamin A. Arch Latinoam Nutr. 1998;48(3):191–6.PubMedGoogle Scholar
  13. 13.
    Garcia-Casal MN, Layrisse M, Solano L, et al. Vitamin A and beta-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. J Nutr. 1998;128(3):646–50.PubMedGoogle Scholar
  14. 14.
    Gibson RS. Technological approaches to combating iron deficiency. Eur J Clin Nutr. 1997;51:S25–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Oyarzun MT, Uauy R, Olivares S. Food based approaches to improve vitamin and mineral nutritional adequacy. Archivos Latinoamericanos De Nutricion. 2001;51(1):7–18.PubMedGoogle Scholar
  16. 16.
    Scholl TO, Reilly T. Anemia, iron and pregnancy outcome. J Nutr. 2000;130(2):443S–7.PubMedGoogle Scholar
  17. 17.
    Schumann K, Elsenhans B, Maurer A. Iron supplementation. J Trace Elem Med Biol. 1998;12(3):129–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Tuma RB, Yuyama LKO, Aguiar JPL, Marques HO. Impacto da farinha de mandioca fortificada com ferro aminoácido quelato no nível de hemoglobina de pré-escolares [Impact of cassava flour fortified with iron amino chelate on the hemoglobin level of preschool children]. Revista de Nutrição. 2003;16(1):29–39.CrossRefGoogle Scholar
  19. 19.
    Winichagoon P, McKenzie JE, Chavasit V, et al. A multi micronutrient-fortified seasoning powder enhances the hemoglobin, zinc, and iodine status of primary school children in north east Thailand: a randomized controlled trial of efficacy. J Nutr. 2006;136(6):1617–23.PubMedGoogle Scholar
  20. 20.
    Arêas JAG. Interações moleculares do amido durante o processo de extrusão [Molecular interactions of starch during the extrusion process]. Bull Brazilian Soc Food Sci Technol. 1996;30:28–30.Google Scholar
  21. 21.
    Hurrell RF, Hess SY. Role for micronutrient interactions in the epidemiology of micronutrient deficiencies: Interactions of iron, iodine and vitamin A. Micronutrient deficiencies during the weaning period and the first years of life. 2004, vol. 54, p. 1–19.Google Scholar
  22. 22.
    Bortolino GA, Vitolo MR. Importância das práticas alimentares no primeiro ano de vida na prevenção da deficiência de ferro [Importance of feeding practices in the first year of life in the prevention of iron deficiency]. Revista de Nutrição. 2010;23(6):1051–62.Google Scholar
  23. 23.
    Moreira-Araújo RSR. Utilização de snack com elevado conteúdo de ferro em pré-escolares para controle de anemia ferropriva [Utilization of a snack with high iron content in pre-school children for combating iron deficiency anaemia]. 2000.Google Scholar
  24. 24.
    Bueno MB, Selem SSC, Arêas JAG, Fisberg RM. Prevalência e fatores associados à anemia entre crianças atendidas em creches públicas de São Paulo [Prevalence and associated factors for anemia among children of public day-care centers in the city São Paulo]. Rev Bras Epidemiol. 2006;9:462–70.CrossRefGoogle Scholar
  25. 25.
    Queiroz AR. Prevalência de anemia e fatores associados em ingressantes no ensino fundamental de escolas públicas do município de São Bernardo do Campo, Estado de São Paulo. [Anaemia prevalence and risk factors in fresh students of the fundamental public schools of São Bernardo do Campo, State of São Paulo, Brazil]. 2007.Google Scholar
  26. 26.
    Darnton-Hill I, Nalubola R. Fortification strategies to meet micronutrient needs: successes and failures. Proc Nutr Soc. 2002;61(2):231–41.PubMedCrossRefGoogle Scholar
  27. 27.
    de Almeida CAN, Crott GC, Ricco RG, et al. Control of iron-deficiency anaemia in Brazilian preschool children using iron-fortified orange juice. Nutr Res. 2003;23(1):27–33.CrossRefGoogle Scholar
  28. 28.
    Mannar MGV. Successful food-based programmes, supplementation and fortification. J Pediatr Gastroenterol Nutr. 2006;43:S47–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Mannar V, Gallego EB. Iron fortification: country level experiences and lessons learned. J Nutr. 2002; 132(4): 856S–8.PubMedGoogle Scholar
  30. 30.
    Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91(5):1461S–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Ledward DA, Lawrie RA. Recovery and utilization of by-product proteins of the meat industry. J Chem Technol Biotechnol Biotechnol. 1984;34(3):223–8.CrossRefGoogle Scholar
  32. 32.
    McMichael AJ, Powles JW, Butler CD, Uauy R. Energy and health 5—food, livestock production, energy, climate change, and health. Lancet. 2007;370(9594):1253–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Arêas JAG. Extrusion of food proteins. Crit Rev Food Sci Nutr. 1992;32(4):365–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Arêas JAG, Mota EMA. Effect of partial lipid removal with several organic solvents on conformation and solubility of protein from bovine lung. Lebensmittel-Wissenchaft Technol. 1990;23(1):49–51.Google Scholar
  35. 35.
    Bastos DHM, Arêas JAG. Lung proteins—effect of defatting with several solvents and extrusion cooking on some functional properties. Meat Sci. 1990;28(3):223–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Bastos DHM, Domenech CH, Arêas JAG. Optimization of extrusion cooking of lung proteins by response-surface methodology. Int J Food Sci Technol. 1991;26(4):403–8.CrossRefGoogle Scholar
  37. 37.
    Cassar R, Sardinha FA, Arêas JAG. Effect of glutamate and inosinate on sensory and instrumental texture of extruded products. Int J Food Sci Technol. 2008;43(9):1528–33.CrossRefGoogle Scholar
  38. 38.
    Pinto TA, Colli C, Arêas JAG. Effect of processing on iron bioavailability of extruded bovine lung. Food Chem. 1997;60(4):459–63.CrossRefGoogle Scholar
  39. 39.
    Poltronieri F, Arêas JAG, Colli C. Extrusion and iron bioavailability in chickpea (Cicer arietinum L.). Food Chem. 2000;70(2):175–80.CrossRefGoogle Scholar
  40. 40.
    Arêas JAG, Lawrie RA. Effect of lipid protein interactions on extrusion of offal protein isolates. Meat Sci. 1984;11(4):275–99.PubMedCrossRefGoogle Scholar
  41. 41.
    Batistuti JP, Barros RMC, Arêas JAG. Optimization of extrusion cooking process for chickpea (Cicer arietinum, L) defatted flour by response-surface methodology. J Food Sci. 1991;56(6):1695.CrossRefGoogle Scholar
  42. 42.
    Beinner MA, Nascimento Soares AD, Antunes Barros AL, Magalhaes Monteiro MA. Sensory evaluation of rice fortified with iron. Ciencia E Tecnologia De Alimentos. 2010;30(2):516–9.CrossRefGoogle Scholar
  43. 43.
    Plahar WA, Onuma-Okezie B, Gyato CK. Development of a high protein weaning food by extrusion cooking using peanuts, maize and soybeans. Plant Foods Hum Nutr. 2003;58(1):1–12.CrossRefGoogle Scholar
  44. 44.
    Moreira-Araujo RSR, Araujo MAM, Arêas JAG. Fortified food made by the extrusion of a mixture of chickpea, corn and bovine lung controls iron-deficiency anaemia in preschool children. Food Chem. 2008;107(1): 158–64.CrossRefGoogle Scholar
  45. 45.
    Moreira-Araujo RSR, Araujo MAM, Silva AMS, Carvalho MR, Arêas JAG. Impacto de salgadinho de alto valor nutricional de crianças de creches municipais de Teresina-PI [Impact of snacks of high nutritional value of children in day care nurseries in Teresina—PI]. Nutrire. 2002;23:7–21.Google Scholar
  46. 46.
    Anton AA, Fulcher RG, Arntfield SD. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: effects of bean addition and extrusion cooking. Food Chem. 2009;113(4):989–96.CrossRefGoogle Scholar
  47. 47.
    Crompton P, Farrel A, Tuony P. Iron deficiency anemia in infants. N Z Med J. 1994;107(972):60–1.Google Scholar
  48. 48.
    DeMaeyer EM, Dallman P, Gurney JM, et al. Preventing and controlling iron deficiency anemia through primary health care: a guide for health administration and program managers. Geneva: World Health Organization; 1989.Google Scholar
  49. 49.
    Extrutec. Manual Técnico: Demonstrativo de custo para produção de “snacks” [Technical manual cost emonstration for snack production]. Ribeirão Preto, São Paulo, Brazil: Extrutec, Equipamentos Industriais; 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • José A. G. Arêas
    • 1
    Email author
  • Raquel de Andrade Cardoso-Santiago
    • 2
  • Regilda Saraiva dos Reis Moreira-Araújo
    • 3
  1. 1.Department of NutritionUniversity of São PauloSão PauloBrazil
  2. 2.Faculdade de NutriçãoUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Departamento de NutriçãoUniversidade Federal do PiauíTeresinaBrazil

Personalised recommendations