Advertisement

Regulation of Immunological Responses by the Neonatal Fc Receptor for IgG, FcRn

Chapter

Abstract

Immunoglobulins (Ig) are the hallmark of the humoral immune system and can be found, in varying concentrations, in all tissues of the body as well as throughout the circulatory system. Of the various isotypes, IgG is by far the most abundant in serum due to its extremely long half-life of 7–23 days. Indeed, while other Ig isotypes are known for very specialized roles in allergy (IgE) and pathogen neutralization (IgA), IgG is the main driver of many of the functions originally attributed to humoral immunity including opsonization, complement activation, and antibody-dependent cellular cytotoxicity (ADCC). Increasingly, however, it is being recognized that the functions of IgG extend beyond simply that of a humoral immune system component to that of a potent integrator of the humoral and cellular arms of a coordinated adaptive immune response.

Keywords

Immunoglobulins Humoral immune system IgG Immunological responses Fc receptor Antibody-dependent cellular cytotoxicity FcRn Intracellular trafficking Regulation of IgG 

Notes

Acknowledgements

This work was supported by the Canadian Institutes of Health Research, the Deutsche Forschungsgemeinschaft (RA 2040/1–1), the High Pointe Foundation, the National Institutes of Health Research (DK53056, DK053162, DK088199, and DK044319), and the Harvard Digestive Diseases Center (NIH P30DK034854).

References

  1. Adams RJ, Heazlewood SP, Gilshenan KS, O’Brien M, McGuckin MA, Florin TH (2008) IgG antibodies against common gut bacteria are more diagnostic for Crohn’s disease than IgG against mannan or flagellin. Am J Gastroenterol 103(2):386–396PubMedGoogle Scholar
  2. Ahouse JJ, Hagerman CL, Mittal P, Gilbert DJ, Copeland NG, Jenkins NA et al (1993) Mouse MHC class I-like Fc receptor encoded outside the MHC. J Immunol 151(11):6076–6088PubMedGoogle Scholar
  3. Akilesh S, Petkova S, Sproule TJ, Shaffer DJ, Christianson GJ, Roopenian D (2004) The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest 113(9):1328–1333PubMedGoogle Scholar
  4. Akilesh S, Huber TB, Wu H, Wang G, Hartleben B, Kopp JB et al (2008) Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci USA 105(3):967–972PubMedGoogle Scholar
  5. Andersen JT, Daba MB, Berntzen G, Michaelsen TE, Sandlie I (2010) Cross-species binding analyses of mouse and human neonatal Fc receptor (FcRn) show dramatic differences in immunoglobulin G (IgG) and albumin binding. J Biol Chem 285(7):4826–4836PubMedGoogle Scholar
  6. Anderson CL, Chaudhury C, Kim J, Bronson CL, Wani MA, Mohanty S (2006) Perspective– FcRn transports albumin: relevance to immunology and medicine. Trends Immunol 27(7):343–348PubMedGoogle Scholar
  7. Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M (2001) Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62(2):93–105PubMedGoogle Scholar
  8. Aoyama Y (2010) What’s new in i.v. immunoglobulin therapy and pemphigus: high-dose i.v. immunoglobulin therapy and its mode of action for treatment of pemphigus. J Dermatol 37(3):239–245PubMedGoogle Scholar
  9. Bai Y, Ye L, Tesar DB, Song H, Zhao D, Bjorkman PJ et al (2011) Intracellular neutralization of viral infection in polarized epithelial cells mediated by neonatal Fc receptor (FcRn)-mediated IgG transport. Proc Natl Acad Sci USA 108(45):18406–18411PubMedGoogle Scholar
  10. Baker K, Qiao S-W, Kuo TT, Aveson VG, Platzer B, Andersen J-T et al (2011) Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8-CD11b + dendritic cells. Proc Natl Acad Sci USA 108(24):9927–9932PubMedGoogle Scholar
  11. Ben Suleiman Y, Yoshida M, Nishiumi S, Tanaka H, Mimura T, Nobutani K et al (2012) Neonatal Fc receptor for IgG (FcRn) expressed in the gastric epithelium regulates bacterial infection in mice. Mucosal Immunol 5(1):87–98PubMedGoogle Scholar
  12. Bitonti AJ, Dumont JA, Low SC, Peters RT, Kropp KE, Palombella VJ et al (2004) Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway. Proc Natl Acad Sci USA 101(26):9763–9768PubMedGoogle Scholar
  13. Blumberg RS, Koss T, Story CM, Barisani D, Polischuk J, Lipin A et al (1995) A major histocompatibility complex class I-related Fc receptor for IgG on rat hepatocytes. J Clin Invest 95(5):2397–2402PubMedGoogle Scholar
  14. Borvak J, Richardson J, Medesan C, Antohe F, Radu C, Simionescu M et al (1998) Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol 10(9):1289–1298PubMedGoogle Scholar
  15. Bossuyt X (2006) Serologic markers in inflammatory bowel disease. Clin Chem 52(2):171–181PubMedGoogle Scholar
  16. Brambell FWR (1966) The transmission of immunity from mother to young and the catabolism of immunoglobulins. Lancet 288(7473):1087–1093Google Scholar
  17. Brambell FWR, Halliday R, Morris IG (1958) Interference by human and bovine serum and serum protein fractions with the absorption of antibodies by suckling rats and mice. Proc R Soc Lond B Biol Sci 149(934):1–11PubMedGoogle Scholar
  18. Burmeister WP, Gastinel LN, Simister NE, Blum ML, Bjorkman PJ (1994a) Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Nature 372(6504):336–343PubMedGoogle Scholar
  19. Burmeister WP, Huber AH, Bjorkman PJ (1994b) Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372(6504):379–383PubMedGoogle Scholar
  20. Catunda Lemos AP, Cervenak J, Bender B, Hoffmann OI, Baranyi M, Kerekes A et al (2012) Characterization of the rabbit neonatal Fc receptor (FcRn) and analyzing the immunophenotype of the transgenic rabbits that overexpresses FcRn. PLoS One 7(1):e28869PubMedGoogle Scholar
  21. Cervenak J, Bender B, Schneider Z, Magna M, Carstea BV, Liliom K et al (2010) Neonatal FcR overexpression boosts humoral immune response in transgenic mice. J Immunol 186(2):959–968PubMedGoogle Scholar
  22. Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC et al (2003) The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 197(3):315–322PubMedGoogle Scholar
  23. Chaudhury C, Brooks CL, Carter DC, Robinson JM, Anderson CL (2006) Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry 45(15):4983–4990PubMedGoogle Scholar
  24. Cianga P, Cianga C, Cozma L, Ward ES, Carasevici E (2003) The MHC class I related Fc receptor, FcRn, is expressed in the epithelial cells of the human mammary gland. Hum Immunol 64(12):1152–1159PubMedGoogle Scholar
  25. Claypool SM, Dickinson BL, Yoshida M, Lencer WI, Blumberg RS (2002) Functional reconstitution of human FcRn in Madin-Darby canine kidney cells requires co-expressed human beta 2-microglobulin. J Biol Chem 277(31):28038–28050PubMedGoogle Scholar
  26. Claypool SM, Dickinson BL, Wagner JS, Johansen FE, Venu N, Borawski JA et al (2004) Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fc gamma-receptor. Mol Biol Cell 15(4):1746–1759PubMedGoogle Scholar
  27. Conroy ME, Shi HN, Walker WA (2009) The long-term health effects of neonatal microbial flora. Curr Opin Allergy Clin Immunol 9(3):197–201PubMedGoogle Scholar
  28. Crow AR, Suppa SJ, Chen X, Mott PJ, Lazarus AH (2011) The neonatal Fc receptor (FcRn) is not required for IVIg or anti-CD44 monoclonal antibody-mediated amelioration of murine immune thrombocytopenia. Blood 118(24):6403–6406PubMedGoogle Scholar
  29. Csorba K, Sesarman A, Oswald E, Feldrihan V, Fritsch A, Hashimoto T et al (2010) Cross-reactivity of autoantibodies from patients with epidermolysis bullosa acquisita with murine collagen VII. Cell Mol Life Sci 67(8):1343–1351PubMedGoogle Scholar
  30. Deane R, Sagare A, Hamm K, Parisi M, LaRue B, Guo H et al (2005) IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood–brain barrier neonatal Fc receptor. J Neurosci 25(50):11495–11503PubMedGoogle Scholar
  31. Deane R, Bell RD, Sagare A, Zlokovic BV (2009) Clearance of amyloid-beta peptide across the blood–brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets 8(1):16–30PubMedGoogle Scholar
  32. Denny MF, Chandaroy P, Killen PD, Caricchio R, Lewis EE, Richardson BC et al (2006) Accelerated macrophage apoptosis induces autoantibody formation and organ damage in systemic lupus erythematosus. J Immunol 176(4):2095–2104PubMedGoogle Scholar
  33. Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE et al (1999) Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104(7):903–911PubMedGoogle Scholar
  34. Dickinson BL, Claypool SM, D’Angelo JA, Aiken ML, Venu N, Yen EH et al (2008) Ca2 + −dependent calmodulin binding to FcRn affects immunoglobulin G transport in the transcytotic pathway. Mol Biol Cell 19(1):414–423PubMedGoogle Scholar
  35. Dumont JA, Bitonti AJ, Clark D, Evans S, Pickford M, Newman SP (2005) Delivery of an erythropoietin-Fc fusion protein by inhalation in humans through an immunoglobulin transport pathway. J Aerosol Med 18(3):294–303PubMedGoogle Scholar
  36. Dumont JA, Liu T, Low SC, Zhang X, Kamphaus G, Sakorafas P et al (2012) Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs. Blood 119(13):3024–3030PubMedGoogle Scholar
  37. Ellinger I, Schwab M, Stefanescu A, Hunziker W, Fuchs R (1999) IgG transport across trophoblast-derived BeWo cells: a model system to study IgG transport in the placenta. Eur J Immunol 29(3):733–744PubMedGoogle Scholar
  38. Firan M, Bawdon R, Radu C, Ober RJ, Eaken D, Antohe F et al (2001) The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of gamma-globulin in humans. Int Immunol 13(8):993–1002PubMedGoogle Scholar
  39. Freiberger T, Ravcuková B, Grodecká L, Kurecová B, Jarkovský J, Bartonková D et al (2010a) No association of FCRN promoter VNTR polymorphism with the rate of maternal-fetal IgG transfer. J Reprod Immunol 85(2):193–197PubMedGoogle Scholar
  40. Freiberger T, Grodecka L, Ravcukova B, Kurecova B, Postranecka V, Vlcek J et al (2010b) Association of FcRn expression with lung abnormalities and IVIG catabolism in patients with common variable immunodeficiency. Clin Immunol 136(3):419–425PubMedGoogle Scholar
  41. Furrie E, Macfarlane S, Cummings JH, Macfarlane GT (2004) Systemic antibodies towards mucosal bacteria in ulcerative colitis and Crohn’s disease differentially activate the innate immune response. Gut 53(1):91–98PubMedGoogle Scholar
  42. Gafencu A, Heltianu C, Burlacu A, Hunziker W, Simionescu M (2003) Investigation of IgG receptors expressed on the surface of human placental endothelial cells. Placenta 24(6):664–676PubMedGoogle Scholar
  43. Hansen RJ, Balthasar JP (2002) Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thromb Haemost 88(6):898–899PubMedGoogle Scholar
  44. Hattori R, Otani H, Moriguchi Y, Matsubara H, Yamamura T, Nakao Y et al (2001) NHE and ICAM-1 expression in hypoxic/reoxygenated coronary microvascular endothelial cells. Am J Physiol Heart Circ Physiol 280(6):H2796–H2803PubMedGoogle Scholar
  45. He Y, Bjorkman PJ (2011) Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY. Proc Natl Acad Sci USA 108(30):12431–12436PubMedGoogle Scholar
  46. He W, Ladinsky MS, Huey-Tubman KE, Jensen GJ, McIntosh JR, Bjorkman PJ (2008) FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455(7212):542–546PubMedGoogle Scholar
  47. Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C et al (2004) Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 279(8):6213–6216PubMedGoogle Scholar
  48. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176(1):346–356PubMedGoogle Scholar
  49. Ishii-Watabe A, Saito Y, Suzuki T, Tada M, Ukaji M, Maekawa K et al (2010) Genetic polymorphisms of FCGRT encoding FcRn in a Japanese population and their functional analysis. Drug Metab Pharmacokinet 25(6):578–587PubMedGoogle Scholar
  50. Israel EJ, Taylor S, Wu Z, Mizoguchi E, Blumberg RS, Bhan A et al (1997) Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92(1):69–74PubMedGoogle Scholar
  51. Jerdeva GV, Tesar DB, Huey-Tubman KE, Ladinsky MS, Fraser SE, Bjorkman PJ (2010) Comparison of FcRn- and pIgR-mediated transport in MDCK cells by fluorescence confocal microscopy. Traffic 11(9):1205–1220PubMedGoogle Scholar
  52. Jin-Kyoo K, May-Fang T, Victor G, Ward ES (1994) Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fc receptor. Eur J Immunol 24(10):2429–2434Google Scholar
  53. Jones EA, Waldmann TA (1972) The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 51(11):2916–2927PubMedGoogle Scholar
  54. Kacskovics I (2004) Fc receptors in livestock species. Vet Immunol Immunopathol 102(4):351–362PubMedGoogle Scholar
  55. Kacskovics I, Wu Z, Simister NE, Frenyo LV, Hammarstrom L (2000) Cloning and characterization of the bovine MHC class I-like Fc receptor. J Immunol 164(4):1889–1897PubMedGoogle Scholar
  56. Kacskovics I, Kis Z, Mayer B, West AP Jr, Tiangco NE, Tilahun M et al (2006a) FcRn mediates elongated serum half-life of human IgG in cattle. Int Immunol 18(4):525–536PubMedGoogle Scholar
  57. Kacskovics I, Mayer B, Kis Z, Frenyo LV, Zhao Y, Muyldermans S et al (2006b) Cloning and characterization of the dromedary (Camelus dromedarius) neonatal Fc receptor (drFcRn). Dev Comp Immunol 30(12):1203–1215PubMedGoogle Scholar
  58. Kelly D, King T, Aminov R (2007) Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res 622(1–2):58–69PubMedGoogle Scholar
  59. Kim JK, Firan M, Radu CG, Kim CH, Ghetie V, Ward ES (1999) Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur J Immunol 29(9):2819–2825PubMedGoogle Scholar
  60. Kim J, Bronson CL, Wani MA, Oberyszyn TM, Mohanty S, Chaudhury C et al (2008) Beta 2-microglobulin deficient mice catabolize IgG more rapidly than FcRn- alpha-chain deficient mice. Exp Biol Med (Maywood) 233(5):603–609Google Scholar
  61. Kim J, Mohanty S, Ganesan LP, Hua K, Jarjoura D, Hayton WL et al (2009) FcRn in the yolk sac endoderm of mouse is required for IgG transport to fetus. J Immunol 182(5):2583–2589PubMedGoogle Scholar
  62. Kobayashi N, Suzuki Y, Tsuge T, Okumura K, Ra C, Tomino Y (2002) FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. Am J Physiol Renal Physiol 282(2):F358–F365PubMedGoogle Scholar
  63. Kobayashi K, Qiao SW, Yoshida M, Baker K, Lencer WI, Blumberg RS (2009) An FcRn-dependent role for anti-flagellin immunoglobulin G in pathogenesis of colitis in mice. Gastroenterology 137(5):1746–1756, e1PubMedGoogle Scholar
  64. Kozlowski PA, Cu-Uvin S, Neutra MR, Flanigan TP (1997) Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun 65(4):1387–1394PubMedGoogle Scholar
  65. Kuo TT, Aveson VG (2011) Neonatal Fc receptor and IgG-based therapeutics. MAbs 3(5):422–430PubMedGoogle Scholar
  66. Kuo TT, de Muinck EJ, Claypool SM, Yoshida M, Nagaishi T, Aveson VG et al (2009) N-glycan moieties in neonatal Fc receptor determine steady-state membrane distribution and directional transport of IgG. J Biol Chem 284(13):8292–8300PubMedGoogle Scholar
  67. Kuo T, Baker K, Yoshida M, Qiao S-W, Aveson V, Lencer W et al (2010) Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol 30(6):777–789Google Scholar
  68. Leach JL, Sedmak DD, Osborne JM, Rahill B, Lairmore MD, Anderson CL (1996) Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport. J Immunol 157(8):3317–3322PubMedGoogle Scholar
  69. Lencer WI, Blumberg RS (2005) A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol 15(1):5–9PubMedGoogle Scholar
  70. Li N, Zhao M, Hilario-Vargas J, Prisayanh P, Warren S, Diaz LA et al (2005) Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest 115(12):3440–3450PubMedGoogle Scholar
  71. Li Z, Palaniyandi S, Zeng R, Tuo W, Roopenian DC, Zhu X (2011) Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci USA 108(11):4388–4393PubMedGoogle Scholar
  72. Liu L, Garcia AM, Santoro H, Zhang Y, McDonnell K, Dumont J et al (2007) Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J Immunol 178(8):5390–5398PubMedGoogle Scholar
  73. Liu X, Lu L, Yang Z, Palaniyandi S, Zeng R, Gao L-Y et al (2011) The neonatal FcR-mediated presentation of immune-complexed antigen is associated with endosomal and phagosomal pH and antigen stability in macrophages and dendritic cells. J Immunol 186(8):4674–4686PubMedGoogle Scholar
  74. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR et al (2004) Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 113(9):1296–1306PubMedGoogle Scholar
  75. Low SC, Mezo AR (2009) Inhibitors of the FcRn: IgG protein-protein interaction. AAPS J 11(3):432–434PubMedGoogle Scholar
  76. Lu W, Zhao Z, Zhao Y, Yu S, Zhao Y, Fan B et al (2007) Over-expression of the bovine FcRn in the mammary gland results in increased IgG levels in both milk and serum of transgenic mice. Immunology 122(3):401–408PubMedGoogle Scholar
  77. Lu L, Palaniyandi S, Zeng R, Bai Y, Liu X, Wang Y et al (2011) An FcRn-targeted mucosal vaccine strategy effectively induces HIV-1 antigen-specific immunity to genital infection. J Virol 85(20):10542–10553PubMedGoogle Scholar
  78. Martin WL, Bjorkman PJ (1999) Characterization of the 2:1 complex between the class I MHC-related Fc receptor and its Fc ligand in solution. Biochemistry 38(39):12639–12647PubMedGoogle Scholar
  79. Martin WL, West AP Jr, Gan L, Bjorkman PJ (2001) Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol Cell 7(4):867–877PubMedGoogle Scholar
  80. Matson AP, Thrall RS, Rafti E, Lingenheld EG, Puddington L (2010) IgG transmitted from allergic mothers decreases allergic sensitization in breastfed offspring. Clin Mol Allergy 8:9PubMedGoogle Scholar
  81. Mayer B, Zolnai A, Frenyo LV, Jancsik V, Szentirmay Z, Hammarstrom L et al (2002) Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology 107(3):288–296PubMedGoogle Scholar
  82. Mayer B, Kis Z, Kajan G, Frenyo LV, Hammarstrom L, Kacskovics I (2004) The neonatal Fc receptor (FcRn) is expressed in the bovine lung. Vet Immunol Immunopathol 98(1–2):85–89PubMedGoogle Scholar
  83. McCarthy KM, Yoong Y, Simister NE (2000) Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J Cell Sci 113(Pt 7):1277–1285PubMedGoogle Scholar
  84. McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE et al (2001) Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci 114(Pt 8):1591–1598PubMedGoogle Scholar
  85. Medesan C, Matesoi D, Radu C, Ghetie V, Ward ES (1997) Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J Immunol 158(5):2211–2217PubMedGoogle Scholar
  86. Mestecky J (1987) The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol 7(4):265–276PubMedGoogle Scholar
  87. Mezo AR, McDonnell KA, Hehir CA, Low SC, Palombella VJ, Stattel JM et al (2008a) Reduction of IgG in nonhuman primates by a peptide antagonist of the neonatal Fc receptor FcRn. Proc Natl Acad Sci USA 105(7):2337–2342PubMedGoogle Scholar
  88. Mezo AR, McDonnell KA, Castro A, Fraley C (2008b) Structure-activity relationships of a peptide inhibitor of the human FcRn: human IgG interaction. Bioorg Med Chem 16(12):6394–6405PubMedGoogle Scholar
  89. Mezo AR, Low SC, Hoehn T, Palmieri H (2011) PEGylation enhances the therapeutic potential of peptide antagonists of the neonatal Fc receptor, FcRn. Bioorg Med Chem Lett 21(21):6332–6335PubMedGoogle Scholar
  90. Mi W, Wanjie S, Lo ST, Gan Z, Pickl-Herk B, Ober RJ et al (2008) Targeting the neonatal fc receptor for antigen delivery using engineered fc fragments. J Immunol 181(11):7550–7561PubMedGoogle Scholar
  91. Mohanty S, Kim J, Ganesan LP, Phillips GS, Hua K, Jarjoura D et al (2010) IgG is transported across the mouse yolk sac independently of Fc[gamma]RIIb. J Reprod Immunol 84(2):133–144PubMedGoogle Scholar
  92. Montoyo HP, Vaccaro C, Hafner M, Ober RJ, Mueller W, Ward ES (2009) Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci USA 106(8):2788–2793PubMedGoogle Scholar
  93. Morell A, Terry WD, Waldmann TA (1970) Metabolic properties of IgG subclasses in man. J Clin Invest 49(4):673–680PubMedGoogle Scholar
  94. Mosconi E, Rekima A, Seitz-Polski B, Kanda A, Fleury S, Tissandie E et al (2010) Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunol 3(5):461–474PubMedGoogle Scholar
  95. Nimmerjahn F, Ravetch JV (2010) Antibody-mediated modulation of immune responses. Immunol Rev 236(1):265–275PubMedGoogle Scholar
  96. Ober RJ, Radu CG, Ghetie V, Ward ES (2001) Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13(12):1551–1559PubMedGoogle Scholar
  97. Ober RJ, Martinez C, Vaccaro C, Zhou J, Ward ES (2004a) Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol 172(4):2021–2029PubMedGoogle Scholar
  98. Ober RJ, Martinez C, Lai X, Zhou J, Ward ES (2004b) Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc Natl Acad Sci USA 101(30):11076–11081PubMedGoogle Scholar
  99. Patel DA, Puig-Canto A, Challa DK, Montoyo HP, Ober RJ, Ward ES (2011) Neonatal Fc receptor blockade by Fc engineering ameliorates arthritis in a murine model. J Immunol 187(2):1015–1022PubMedGoogle Scholar
  100. Peters RT, Low SC, Kamphaus GD, Dumont JA, Amari JV, Lu Q et al (2010) Prolonged activity of factor IX as a monomeric Fc fusion protein. Blood 115(10):2057–2064PubMedGoogle Scholar
  101. Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC et al (2006) Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 18(12):1759–1769PubMedGoogle Scholar
  102. Cianga P, Medesan C, Richardson JA, Ghetie V, Ward ES (1999) Identification and function of neonatal Fc receptor in mammary gland of lactating mice. Eur J Immunol 29(8):2515–2523PubMedGoogle Scholar
  103. Popivanova BK, Kitamura K, Yu W, Kondo T, Kagaya T, Kaneko S et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118(2):560–570PubMedGoogle Scholar
  104. Porollo A, Meller J (2007) Versatile annotation and publication quality visualization of protein complexes using POLYVIEW-3D. BMC Bioinformatics 8:316PubMedGoogle Scholar
  105. Praetor A, Hunziker W (2002) beta(2)-Microglobulin is important for cell surface expression and pH-dependent IgG binding of human FcRn. J Cell Sci 115(Pt 11):2389–2397PubMedGoogle Scholar
  106. Qiao SW, Kobayashi K, Johansen FE, Sollid LM, Andersen JT, Milford E et al (2008) Dependence of antibody-mediated presentation of antigen on FcRn. Proc Natl Acad Sci USA 105(27):9337–9342PubMedGoogle Scholar
  107. Raghavan M, Gastinel LN, Bjorkman PJ (1993) The class I major histocompatibility complex related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release. Biochemistry 32(33):8654–8660PubMedGoogle Scholar
  108. Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ (1995) Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry 34(45):14649–14657PubMedGoogle Scholar
  109. Rodewald R (1976) pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol 71(2):666–669PubMedGoogle Scholar
  110. Roopenian D, Sun V (2010) Clinical ramifications of the MHC family Fc receptor FcRn. J Clin Immunol 30(6):790–797PubMedGoogle Scholar
  111. Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N et al (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170(7):3528–3533PubMedGoogle Scholar
  112. Roopenian DC, Christianson GJ, Sproule TJ (2010) Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic antibodies. Methods Mol Biol 602:93–104PubMedGoogle Scholar
  113. Russell DG (2007) New ways to arrest phagosome maturation. Nat Cell Biol 9(4):357–359PubMedGoogle Scholar
  114. Sakagami M, Omidi Y, Campbell L, Kandalaft LE, Morris CJ, Barar J et al (2006) Expression and transport functionality of FcRn within rat alveolar epithelium: a study in primary cell culture and in the isolated perfused lung. Pharm Res 23(2):270–279PubMedGoogle Scholar
  115. Sarav M, Wang Y, Hack BK, Chang A, Jensen M, Bao L et al (2009) Renal FcRn reclaims albumin but facilitates elimination of IgG. J Am Soc Nephrol 20(9):1941–1952PubMedGoogle Scholar
  116. Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC et al (2006) NOX2 controls phagosomal pH to regulate antigen processing during cross-presentation by dendritic cells. Cell 126(1):205–218PubMedGoogle Scholar
  117. Sayed-Ahmed A, Kassab M, Abd-Elmaksoud A, Elnasharty M, El-Kirdasy A (2010) Expression and immunohistochemical localization of the neonatal Fc receptor (FcRn) in the mammary glands of the Egyptian water buffalo. Acta Histochem 112(4):383–391PubMedGoogle Scholar
  118. Schlachetzki F, Zhu C, Pardridge WM (2002) Expression of the neonatal Fc receptor (FcRn) at the blood–brain barrier. J Neurochem 81(1):203–206PubMedGoogle Scholar
  119. Schnulle PM, Hurley WL (2003) Sequence and expression of the FcRn in the porcine mammary gland. Vet Immunol Immunopathol 91(3–4):227–231PubMedGoogle Scholar
  120. Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(Suppl 2):S41–S52PubMedGoogle Scholar
  121. Sesarman A, Sitaru AG, Olaru F, Zillikens D, Sitaru C (2008) Neonatal Fc receptor deficiency protects from tissue injury in experimental epidermolysis bullosa acquisita. J Mol Med 86(8):951–959PubMedGoogle Scholar
  122. Sesarman A, Vidarsson G, Sitaru C (2010) The neonatal Fc receptor as therapeutic target in IgG-mediated autoimmune diseases. Cell Mol Life Sci 67(15):2533–2550PubMedGoogle Scholar
  123. Shah U, Dickinson BL, Blumberg RS, Simister NE, Lencer WI, Walker WA (2003) Distribution of the IgG Fc receptor, FcRn, in the human fetal intestine. Pediatr Res 53(2):295–301PubMedGoogle Scholar
  124. Shiomi H, Masuda A, Nishiumi S, Nishida M, Takagawa T, Shiomi Y et al (2010) Gamma interferon produced by antigen-specific CD4+ T cells regulates the mucosal immune responses to Citrobacter rodentium infection. Infect Immun 78(6):2653–2666PubMedGoogle Scholar
  125. Simister NE (2003) Placental transport of immunoglobulin G. Vaccine 21(24):3365–3369PubMedGoogle Scholar
  126. Simister NE, Ahouse JC (1996) The structure and evolution of FcRn. Res Immunol 147(5):333–337PubMedGoogle Scholar
  127. Simister NE, Mostov KE (1989a) An Fc receptor structurally related to MHC class I antigens. Nature 337(6203):184–187PubMedGoogle Scholar
  128. Simister NE, Mostov KE (1989b) Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog. Cold Spring Harb Symp Quant Biol 54(Pt 1):571–580PubMedGoogle Scholar
  129. Simister NE, Rees AR (1985) Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur J Immunol 15(7):733–738PubMedGoogle Scholar
  130. Spiegelberg HL (1989) Biological role of different antibody classes. Int Arch Allergy Appl Immunol 90(Suppl 1):22–27PubMedGoogle Scholar
  131. Spiegelberg HL, Weigle WO (1965) Studies on the catabolism of gamma- G subunits and chains. J Immunol 95(6):1034–1040PubMedGoogle Scholar
  132. Spiegelberg HL, Fishkin BG, Grey HM (1968) Catabolism of human gammaG-immunoglobulins of different heavy chain subclasses. I. Catabolism of gammaG-myeloma proteins in man. J Clin Invest 47(10):2323–2330PubMedGoogle Scholar
  133. Spiekermann GM, Finn PW, Ward ES, Dumont J, Dickinson BL, Blumberg RS et al (2002) Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196(3):303–310PubMedGoogle Scholar
  134. Stirling CM, Charleston B, Takamatsu H, Claypool S, Lencer W, Blumberg RS et al (2005) Characterization of the porcine neonatal Fc receptor–potential use for trans-epithelial protein delivery. Immunology 114(4):542–553PubMedGoogle Scholar
  135. Story CM, Mikulska JE, Simister NE (1994) A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J Exp Med 180(6):2377–2381PubMedGoogle Scholar
  136. Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T et al (2010) Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol 184(4):1968–1976PubMedGoogle Scholar
  137. Szlauer R, Ellinger I, Haider S, Saleh L, Busch BL, Knofler M et al (2009) Functional expression of the human neonatal Fc-receptor, hFcRn, in isolated cultured human syncytiotrophoblasts. Placenta 30(6):507–515PubMedGoogle Scholar
  138. Tesar DB, Björkman PJ (2010) An intracellular traffic jam: Fc receptor-mediated transport of immunoglobulin G. Curr Opin Struct Biol 20(2):226–233PubMedGoogle Scholar
  139. Tesar DB, Cheung EJ, Bjorkman PJ (2008) The chicken yolk sac IgY receptor, a mammalian mannose receptor family member, transcytoses IgY across polarized epithelial cells. Mol Biol Cell 19(4):1587–1593PubMedGoogle Scholar
  140. Tiwari B, Junghans RP (2005) Functional analysis of the mouse Fcgrt 5′ proximal promoter. Biochim Biophys Acta 1681(2–3):88–98PubMedGoogle Scholar
  141. Tzaban S, Massol RH, Yen E, Hamman W, Frank SR, Lapierre LA et al (2009) The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J Cell Biol 185(4):673–684PubMedGoogle Scholar
  142. Vaccaro C, Zhou J, Ober RJ, Ward ES (2005) Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 23(10):1283–1288PubMedGoogle Scholar
  143. Vaccaro C, Bawdon R, Wanjie S, Ober RJ, Ward ES (2006) Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc Natl Acad Sci USA 103(49):18709–18714PubMedGoogle Scholar
  144. Vaughn DE, Bjorkman PJ (1998) Structural basis of pH-dependent antibody binding by the neonatal Fc receptor. Structure 6(1):63–73PubMedGoogle Scholar
  145. Verhasselt V, Milcent V, Cazareth J, Kanda A, Fleury S, Dombrowicz D et al (2008) Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat Med 14(2):170–175PubMedGoogle Scholar
  146. Waldmann TA, Terry WD (1990) Familial hypercatabolic hypoproteinemia. A disorder of endogenous catabolism of albumin and immunoglobulin. J Clin Invest 86(6):2093–2098PubMedGoogle Scholar
  147. Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH (2000) Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 25(6):300–302PubMedGoogle Scholar
  148. Wani MA, Haynes LD, Kim J, Bronson CL, Chaudhury C, Mohanty S et al (2006) Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci USA 103(13):5084–5089PubMedGoogle Scholar
  149. Ward ES, Ober RJ, Frederick WA (2009) Chapter 4 Multitasking by exploitation of intracellular transport functions: the many faces of FcRn. Adv Immunol 103:77–115, Academic PressPubMedGoogle Scholar
  150. Wernick NL, Haucke V, Simister NE (2005) Recognition of the tryptophan-based endocytosis signal in the neonatal Fc receptor by the mu subunit of adaptor protein-2. J Biol Chem 280(8):7309–7316PubMedGoogle Scholar
  151. West AP Jr, Bjorkman PJ (2000) Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor. Biochemistry 39(32):9698–9708PubMedGoogle Scholar
  152. West AP Jr, Herr AB, Bjorkman PJ (2004) The chicken yolk sac IgY receptor, a functional equivalent of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog. Immunity 20(5):601–610PubMedGoogle Scholar
  153. Wu Z, Simister NE (2001) Tryptophan- and dileucine-based endocytosis signals in the neonatal Fc receptor. J Biol Chem 276(7):5240–5247PubMedGoogle Scholar
  154. Ye L, Liu X, Rout SN, Li Z, Yan Y, Lu L et al (2008) The MHC class II-associated invariant chain interacts with the neonatal Fc gamma receptor and modulates its trafficking to endosomal/lysosomal compartments. J Immunol 181(4):2572–2585PubMedGoogle Scholar
  155. Ye L, Zeng R, Bai Y, Roopenian DC, Zhu X (2011) Efficient mucosal vaccination mediated by the neonatal Fc receptor. Nat Biotech 29(2):158–163Google Scholar
  156. Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S et al (2009) Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol 182(12):7663–7671PubMedGoogle Scholar
  157. Yeung YA, Wu X, Reyes AE 2nd, Vernes JM, Lien S, Lowe J et al (2010) A therapeutic anti-VEGF antibody with increased potency independent of pharmacokinetic half-life. Cancer Res 70(8):3269–3277PubMedGoogle Scholar
  158. Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC et al (2004) Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20(6):769–783PubMedGoogle Scholar
  159. Yoshida M, Kobayashi K, Kuo TT, Bry L, Glickman JN, Claypool SM et al (2006) Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J Clin Invest 116(8):2142–2151PubMedGoogle Scholar
  160. Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IWL, Sproule TJ et al (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotech 28(2):157–159Google Scholar
  161. Zheng Y, Scheerens H, Davis JC Jr, Deng R, Fischer SK, Woods C et al (2011) Translational pharmacokinetics and pharmacodynamics of an FcRn-variant anti-CD4 monoclonal antibody from preclinical model to phase I study. Clin Pharmacol Ther 89(2):283–290PubMedGoogle Scholar
  162. Zhou J, Mateos F, Ober RJ, Ward ES (2005a) Conferring the binding properties of the mouse MHC class I-related receptor, FcRn, onto the human ortholog by sequential rounds of site-directed mutagenesis. J Mol Biol 345(5):1071–1081PubMedGoogle Scholar
  163. Zhou J, Pop LM, Ghetie V (2005b) Hypercatabolism of IgG in mice with lupus-like syndrome. Lupus 14(6):458–466PubMedGoogle Scholar
  164. Zhou XJ, Yu L, Zhu L, Hou P, Lv JC, Yu F et al (2009) Association between polymorphisms in the FCGRT gene and lupus nephritis in Chinese patients. Clin Exp Rheumatol 27(4):609–614PubMedGoogle Scholar
  165. Zhu X, Meng G, Dickinson BL, Li X, Mizoguchi E, Miao L et al (2001) MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol 166(5):3266–3276PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Gastroenterology, Hepatology and EndoscopyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Division of Gastroenterology, Hepatology and EndoscopyHarvard Medical School and Brigham and Women’s HospitalBostonUSA

Personalised recommendations