Advertisement

Overconvergence in ℂ of Some Bernstein-Type Operators

  • Sorin G. Gal
Chapter

Abstract

Section 1.1 of this chapter contains classical definitions and results in complex analysis useful for the next sections.

References

  1. 1.
    Abel, U., Gupta, V., Mohapatra, R.N.: Local approximation by beta operators. Nonlinear Anal. 62(1), 41–52 (2005)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Abel, U., Gupta, V., Mohapatra, R.: Local approximation by a variant of Bernstein-Durrmeyer operators. Nonlinear Anal. Theory Methods Appl. 68(11), 3372–3381 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Abel, U., Heilmann, H.: The complete asymptotic expansion for Bernstein-Durrmeyer operator with Jacobi weights. Mediterr. J. Math. 1(4), 487–499 (2004)MathSciNetMATHCrossRefGoogle Scholar
  4. 5.
    Alexander, J.W.: Functions which map the interior of the unit circle upon simple regions. Ann. Math. 17(1915), 12–22 (1915)MATHCrossRefGoogle Scholar
  5. 7.
    Altomare, F., Mangino, E.: On a generalization of Baskakov operator. Rev. Roumaine Math. Pures Appl. 44(5–6), 683–705 (1999)MathSciNetMATHGoogle Scholar
  6. 8.
    Altomare, F., Raşa, I.: Feller semigroups, Bernstein-type operators and generalized convexity associated with positive projections. New Develpments in Aproximation Theory, Dortmund, 1998, pp. 9–32. Birkhauser, Basel 1999 (1999)Google Scholar
  7. 9.
    Anastassiou, G., Gal, S.G.: Approximation by complex Bernstein-Schurer and Kantorovich-Schurer polynomials in compact disks. Comput. Math. Appl. 58(4), 734–743 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 11.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  9. 12.
    Bartolomeu, J., He, M.: On Faber polynomials generated by an m-star. Math. Comput. 62, 277–288 (1994)Google Scholar
  10. 15.
    Berens, H., Xu, Y.: On Bernstein-Durrmeyer polynomials with Jacobi weights. In: Chui, C.K. (ed.) Approximation Theory and Functionals Analysis, pp. 25–46. Academic Press, Boston (1991)Google Scholar
  11. 19.
    Bernstein, S.N.: Complétement a l’article de E. Voronowskaja. C.R. Acad. Sci. U.R.S.S. Ser. A. 4, 86–92 (1932)Google Scholar
  12. 20.
    Bernstein, S.N.: Leo̧ns sur les Propriétés Extrémales et la Meilleure Approximations des Fonctions Analytiques d’Une Variable Réelle. Gauthier-Villars, Paris (1926)Google Scholar
  13. 21.
    Bleimann, G, Butzer, P.L., Hahn, L.: A Bernstein-type operator approximating continuous functions on the semi-axis. Indag. Math. 42, 255–262 (1980)MathSciNetMATHGoogle Scholar
  14. 24.
    Chen, W.Z.: On the modified Bernstein-Durrmeyer operators. In: Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China (1987)Google Scholar
  15. 26.
    Cimoca, G., Lupaş, A.: Two generalizations of the Meyer-König and Zeller operator. Mathematica(Cluj) 9(32)(2), 233–240 (1967)Google Scholar
  16. 27.
    Coleman, J.P., Smith, R.A.: The Faber polynomials for circular sectors. Math. Comput. 49, 231–241 (1987)MathSciNetMATHCrossRefGoogle Scholar
  17. 28.
    Coleman, J.P., Myers, N.J.: The Faber polynomials for annular sectors. Math. Comput. 64, 181–203 (1995)MathSciNetMATHCrossRefGoogle Scholar
  18. 29.
    Curtiss, J.H.: Faber polynomials and the Faber series. Am. Math. Month 78(6), 5677–596 (1971)MathSciNetCrossRefGoogle Scholar
  19. 33.
    Dzjadyk, V.K.: Introduction to the Theory of Uniform Approximation of Functions by Polynomials (Russian). Nauka, Moscow (1977)Google Scholar
  20. 34.
    Faber, G.: Über polynomische Entwicklungen. Math. Ann. 57, 398–408 (1903)Google Scholar
  21. 38.
    Gaier, D.: Lectures on Complex Approximation. Birkhauser, Boston (1987)MATHCrossRefGoogle Scholar
  22. 39.
    Gal, S.G.: Shape Preserving Approximation by Real and Complex Polynomials. Birkhauser, Boston, Basel, Berlin (2008)MATHCrossRefGoogle Scholar
  23. 41.
    Gal, S.G.: Voronovskaja’s theorem and iterations for complex Bernstein polynomials in compact disks. Mediterr. J. Math. 5(3), 253–272 (2008)MathSciNetMATHCrossRefGoogle Scholar
  24. 43.
    Gal, S.G.: Exact orders in simultaneous approximation by complex Bernstein polynomials. J. Concr. Appl. Math. 7(3), 215–220 (2009)MathSciNetMATHGoogle Scholar
  25. 44.
    Gal, S.G.: Approximation by complex Bernstein-Stancu polynomials in compact disks. Results Math. 53(3–4), 245–256 (2009)MathSciNetMATHCrossRefGoogle Scholar
  26. 45.
    Gal, S.G.: Exact orders in simultaneous approximation by complex Bernstein-Stancu polynomials. Revue d’Anal. Numér. Théor. de L’Approx. (Cluj-Napoca) 37(1), 47–52 (2008)Google Scholar
  27. 46.
    Gal, S.G.: Generalized Voronovskaja’s theorem and approximation by Butzer’s combinations of complex Bernstein polynomials. Results Math. 53(3–4), 257–268 (2009)MathSciNetMATHCrossRefGoogle Scholar
  28. 47.
    Gal, S.G.: Approximation by complex Bernstein-Kantorovich and Stancu-Kantorovich polynomials and their iterates in compact disks. Revue D’Anal. Numér. Théor. de L’Approx. (Cluj) 37(2), 159–168 (2008)Google Scholar
  29. 49.
    Gal, S.G.: Approximation by Complex Bernstein and Convolution Type Operators. World Scientific Publishing, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai (2009)MATHGoogle Scholar
  30. 50.
    Gal, S.G.: Approximation by complex genuine Durrmeyer type polynomials in compact disks. Appl. Math. Comput. 217, 1913–1920 (2010)MathSciNetMATHCrossRefGoogle Scholar
  31. 51.
    Gal, S.G.: Approximation by complex Bernstein-Durrmeyer polynomials with Jacobi weightds in compact disks. Mathematica Balkanica (N.S.) 24(1–2), 103–119 (2010)Google Scholar
  32. 52.
    Gal, S.G.: Approximation by complex Lorentz polynomials. Math. Comm. 16(2011), 65–75 (2011)MathSciNetGoogle Scholar
  33. 53.
    Gal, S.G.: Differentiated generalized Voronovskaja’s theorem in compact disks. Results Math. 61(3), 247–253 (2012)MathSciNetCrossRefGoogle Scholar
  34. 58.
    Gal, S.G.: Approximation by complex q-Lorentz polynomials, q > 1. Mathematica (Cluj) 54(77)(1), 53–63 (2012)Google Scholar
  35. 59.
    Gal, S.G.: Approximation of analytic functions without exponential growth conditions by complex Favard-Szász-Mirakjan operators. Rendiconti del Circolo Matematico di Palermo 59(3), 367–376 (2010)MathSciNetMATHCrossRefGoogle Scholar
  36. 60.
    Gal, S.G.: Approximation by quaternion q-Bernstein polynomials, q > 1. Adv. Appl. Clifford Alg. 22(2), 313–319 (2012)MathSciNetMATHCrossRefGoogle Scholar
  37. 61.
    Gal, S.G.: Approximation in compact sets by q-Stancu-Faber polynomials, q > 1. Comput. Math. Appl. 61(10), 3003–3009 (2011)MathSciNetMATHCrossRefGoogle Scholar
  38. 62.
    Gal, S.G.: Voronovskaja-type results in compact disks for quaternion q-Bernstein operators, q ≥ 1. Complex Anal. Oper. Theory 6(2), 515–527 (2012)MathSciNetCrossRefGoogle Scholar
  39. 63.
    Gal, S.G.: (Online access) Erratum to: Differentiated generalized Voronovskaja’s theorem in compact disks. Results Math. DOI 10.1007/s00025-012-0295-1, published online 23 October 2012Google Scholar
  40. 66.
    Gal, S.G., Gupta, V.: (Online access) Approximation by complex Beta operators of first kind in strips of compact disks. Mediterranean J. Math. 10(1), 31–39 (2013)Google Scholar
  41. 67.
    Gal, S.G., Gupta, V., Mahmudov, N.I.: Approximation by a complex q-Durrmeyer type operator. Ann. Univ. Ferrara 58, 65–87 (2012)MathSciNetCrossRefGoogle Scholar
  42. 68.
    Gal, S.G., Mahmudov, N.I., Kara, M.: (Online access) Approximation by complex q-Szàsz-Kantorovich operators in compact disks. Complex Anal. Oper. Theory, DOI: 10.1007/s11785-012-0257-3Google Scholar
  43. 69.
    Gentili, G., Stoppato, C.: Power series and analyticity over the quaternions. Math. Ann. 352(1), 113–131 (2012)MathSciNetMATHCrossRefGoogle Scholar
  44. 70.
    Gentili, G., Struppa, D.C.: A new theory of regular functions of a quaternionic variable. Advances Math. 216, 279–301 (2007)MathSciNetMATHCrossRefGoogle Scholar
  45. 71.
    Gonska, H., Piţul, P., Raşa, I.: On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator of positive linear operators. In: Proceed. Intern. Conf. on “Numer. Anal., Approx. Theory”, NAAT, Cluj-Napoca, Casa Cartii de Stiinta, Cluj-Napoca, pp. 55–80, 2006Google Scholar
  46. 72.
    Gonska H., Raşa, I.: Asymptotic behaviour of differentiated Bernstein polynomials. Mat. Vesnik, 61, 53–60 (2009)MathSciNetMATHGoogle Scholar
  47. 73.
    Goodman, T.N.T., Sharma, A.: A modified Bernstein-Schoenberg operator. In: Sendov, Bl. et al (eds.) Constructive Theory of Functions - Varna 1987, pp. 166–173. Bulgar. Acad. Sci., Sofia (1988)Google Scholar
  48. 74.
    Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions, Pure and Applied Mathematics, vol. 255. Marcel Dekker, New York (2003)Google Scholar
  49. 75.
    Gupta, V.: Some approximation properties of q-Durrmeyer type operators. Appl. Math. Comput. 197(1), 172–178 (2008)MathSciNetMATHCrossRefGoogle Scholar
  50. 76.
    Gupta, V., Finta, Z.: On certain q-Durrmeyer type operators. Appl. Math. Comput. 209(2), 415–420 (2009)MathSciNetMATHCrossRefGoogle Scholar
  51. 77.
    Hasson, M.: Expansion of analytic functions of an operator in series of Faber polynomials. Bull. Aust. Math. Soc. 56, 303–318 (1997)MathSciNetMATHCrossRefGoogle Scholar
  52. 78.
    He, M.: Explicit representations of Faber polynomials for m-cusped hypocycloids. J. Approx. Theory 87, 137–147 (1996)MathSciNetMATHCrossRefGoogle Scholar
  53. 79.
    He, M.: The Faber polynomials for m-fold symmetric domains. J. Comput. Appl. Math. 54, 313–324 (1994)MathSciNetMATHCrossRefGoogle Scholar
  54. 80.
    He, M.: The Faber polynomials for circular lunes. Comput. Math. Appl. 30, 307–315 (1995)MathSciNetMATHCrossRefGoogle Scholar
  55. 81.
    Henrici, P.: Applied and Computational Analysis, vol. I. Wiley, New York (1974)MATHGoogle Scholar
  56. 82.
    He, M., Saff, E.B.: The zeros of Faber polynomials for and m-cusped hypocycloid. J. Approx. Theory 78, 410–432 (1994)MathSciNetMATHCrossRefGoogle Scholar
  57. 87.
    Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)MATHGoogle Scholar
  58. 90.
    Khan, M.K.: Approximation properties of Beta operators. In: Progress in Approximation Theory, pp. 483–495. Academic Press, New York (1991)Google Scholar
  59. 91.
    Kohr, G., Mocanu, P.T.: Special Chapters of Complex Analysis (in Romanian). University Press, Cluj-Napoca (2005)Google Scholar
  60. 95.
    Leviatan, D.: On the remainder in the approximation of functions by Bernstein-type Operators. J. Appox. Theory 2, 400–409 (1969)MathSciNetMATHCrossRefGoogle Scholar
  61. 96.
    Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea Publication, New York (1986)MATHGoogle Scholar
  62. 97.
    Lorentz, G.G.: Approximation of Functions. Chelsea Publication, New York (1987)Google Scholar
  63. 99.
    Lupaş, A.: On Bernstein power series. Mathematica(Cluj) 8(31), 287–296 (1966)Google Scholar
  64. 100.
    Lupaş, A.: Some properties of the linear positive operators, III. Revue d’Analyse Numer. Théor. Approx. 3, 47–61 (1974)MATHGoogle Scholar
  65. 101.
    Lupas, A.: Die Folge der Beta-Operatoren. Dissertation, Univ. Stuttgart, Stuttgart (1972)Google Scholar
  66. 102.
    Lupaş, L., Lupaş, A.: Polynomials of binomial type and approximation operators. Stud. Univ. “Babes-Bolyia”, Math. 32(4), 60–69 (1987)Google Scholar
  67. 103.
    Lupaş, A., Müller, M.: Approximationseigenschaften der Gammaoperatoren. Math. Zeitschr. 98, 208–226 (1967)MATHCrossRefGoogle Scholar
  68. 104.
    Mahmudov, N.I.: Convergence properties and iterations for q-Stancu polynomials in compact disks. Comput. Math. Appl. 59(12), 3763–3769 (2010)MathSciNetMATHCrossRefGoogle Scholar
  69. 105.
    Mahmudov, N.I.: Approximation properties of complex q-Szász-Mirakjan operators in compact disks. Comput. Math. Appl. 60, 1784–1791 (2010)MathSciNetMATHCrossRefGoogle Scholar
  70. 106.
    Mahmudov, N.I., Kara, M.: Approximation theorems for generalized complex Kantorovich-type operators. J. Appl. Math. 2012, Article ID 454579, 14 pages (2012). Doi:10.1155/2012/454579Google Scholar
  71. 108.
    Mejlihzon, A.Z.: On the notion of monogenic quaternions (in Russian). Dokl. Akad. Nauk SSSR 59, 431–434 (1948).Google Scholar
  72. 109.
    Meyer-König, W., Zeller, K.: Bernsteinsche Potenzreihen. Studia Math. 19, 89–94 (1960)MATHGoogle Scholar
  73. 110.
    Mocanu, P.T., Bulboacă, T., Sălăgean, Gr. St.: Geometric Function Theory of Univalent Functions, (in Romanian). Science Book’s House, Cluj-Napoca (1999)Google Scholar
  74. 111.
    Mocică, G.: Problems of Special Functions (in Romanian). Edit. Didact. Pedag., Bucharest (1988)Google Scholar
  75. 112.
    Moisil, Gr.C.: Sur les quaternions monogènes. Bull. Sci. Math. (Paris) LV, 168–174 (1931)Google Scholar
  76. 113.
    Moldovan, G.: Discrete convolutions for functions of several variables and linear positive operators (Romanian). Stud. Univ. “Babes-Bolyai” Ser. Math. 19(1), 51–57 (1974)Google Scholar
  77. 114.
    Mühlbach, G.: Verallgemeinerungen der Bernstein - und der Lagrangepolynome. Rev. Roumaine Math. Pures Appl. 15(8), 1235–1252 (1970)MathSciNetMATHGoogle Scholar
  78. 117.
    Ostrovska, S.: On the q-Bernstein polynomials and their iterates. Adv. Stud. Contemp. Math. 11, 193–204 (2005)MathSciNetMATHGoogle Scholar
  79. 118.
    Ostrovska, S.: q-Bernstein polynomials and their iterates. J. Approx. Theory 123, 232–255 (2003)MathSciNetMATHGoogle Scholar
  80. 119.
    Parvanov, P.P., Popov, B.D.: The limit case of Bernstein’s operators with Jacobi weights. Math. Balkanica, N.S. 8, 165–177 (1994)Google Scholar
  81. 120.
    Păltănea, R.: Sur une opérateur polynomial defini sur l’ensemble des fonctions intégrables. In: Itinerant Seminar on Functional Equations, Approximation and Convexity, (Cluj-Napoca), Preprint 83-2, Univ. “Babes-Bolyai”, Cluj-Napoca, pp. 101–106 (1983)Google Scholar
  82. 121.
    Păltănea, R.: Inverse theorem for a polynomial operator. In: Itinerant Seminar on Functional Equations, Aproximation and Convexity (Cluj-Napoca), Preprint 85-6, University “Babes-Bolyai”, Cluj-Napoca, pp. 149–152 (1985)Google Scholar
  83. 122.
    Păltănea, R.: Une classe générale d’operateur polynomiaux. Revue Anal. Numér. Théor. Approx. (Cluj) 17(1), 49–52 (1988)Google Scholar
  84. 123.
    Phillips, G.M.: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4, 511–518 (1997)MathSciNetMATHGoogle Scholar
  85. 124.
    Radon, J.: Über die Randwertaufgaben beim logarithmischen Potential. Sitz.-Ber. Wien Akad. Wiss. Abt. IIa 128, 1123–1167 (1919)Google Scholar
  86. 126.
    Raşa, I.: On Soardi’s Bernstein operators of second kind. In: Lupsa, L., Ivan, M. (eds.) Proceed. Conf. for Analysis, Functional Equations, Approximation and Convexity, pp. 264–271. Carpatica Press, Cluj-Napoca (1999)Google Scholar
  87. 128.
    Sauer, T.: The genuine Bernstein-Durrmeyer operator on a simplex. Results Math. 26(1–2), 99–130 (1994)MathSciNetMATHCrossRefGoogle Scholar
  88. 130.
    Schurer, F.: Linear positive operators in approximation theory. Math. Inst. Tech. Univ. Delft Report, (1962)Google Scholar
  89. 132.
    Soardi, P.: Bernstein polynomials and random walks on hypergroups. In: Herbert, H. (ed.) Proceedings of the 10th Oberwolfach Conference on Probability Measures on Groups, X, 1990, pp. 387–393. Plenum Publication, New York (1991)Google Scholar
  90. 134.
    Stancu, D.D.: Approximation of functions by means of some new classes of linear polynomial operators. In: Colatz, L., Meinardus, G. (eds.) Proc. Conf. Math. Res. Inst. Oberwolfach Numerische Methoden der Approximationstheorie, 1971, pp. 187–203. Birkhäuser, Basel (1972)Google Scholar
  91. 135.
    Stepanets, A.I.: Classification and Approximation of Periodic Functions, Mathematics and Its Applications, vol. 333. Kluwer Academic, Dordrecht, Boston, London (1995)CrossRefGoogle Scholar
  92. 136.
    Suetin, P.K.: Series of Faber Polynomials. Gordon and Breach, Amsterdam (1998)MATHGoogle Scholar
  93. 142.
    Voronovskaja, E.V.: Determination de la forme asymptotique de l’approximation des fonctions par les polynômes de M. Bernstein (in Russian). C.R. (Dokl.) Acad. Sci. U.R.S.S. A 4, 79–85 (1932)Google Scholar
  94. 145.
    Wang, H., Wu, X.Z.: Saturation of convergence for q-Bernstein polynomials in the case q ≥ 1. J. Math. Anal. Appl. 337, 744–750 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sorin G. Gal
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of OradeaOradeaRomania

Personalised recommendations