Skip to main content

Stabilization of Decentralized Systems Over Communication Channels

  • Chapter
  • First Online:
Book cover Stochastic Networked Control Systems

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

  • 2324 Accesses

Abstract

This chapter discusses stabilization under a decentralized information structure for multi-sensor and multi-controller systems. Existence results on stabilizing policies under the decentralized information structure are obtained. In the absence of noise, it is shown that multi-controller systems, unlike multi-sensor systems with a centralized controller, entail a rate loss due to decentralization. The noisy cases are also investigated and rate conditions are established for multi-sensor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, B.D.O., Moore, J.B.: Time-varying feedback decentralized control. IEEE Trans. Autom. Control 26, 1133–1139 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, C.T.: Linear Systems Theory and Design. Oxford University Press, Oxford (1999)

    Google Scholar 

  3. Corfmat, J.P., Morse, A.S.: Decentralized control of linear multivariable systems. Automatica 11, 479–497 (1976)

    Article  MathSciNet  Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  5. Csiszar, I., Korner, J.: Information Theory: Coding Theorems for Discrete Memoryless Channels. Akademiai Kiado, Budapest (1981)

    MATH  Google Scholar 

  6. Gastpar, M.: Cut-set arguments for source-channel networks. In: Proceedings of the IEEE International Symposium on Information Theory, vol. 34, 2004

    Google Scholar 

  7. Gong, Z., Aldeen, M.: Stabilization of decentralized control systems. J. Math. Syst. Estimation Control 7, 1–16 (1997)

    MathSciNet  Google Scholar 

  8. Gray, R.M.: Entropy and Information Theory. Springer, New York (1990)

    Book  MATH  Google Scholar 

  9. Gupta, V., Martins, N.C., Baras, J.S.: Optimal output feedback control using two remote sensors over erasure channels. IEEE Trans. Autom. Control 54, 1463–1476 (2009)

    Article  MathSciNet  Google Scholar 

  10. Johnston, A., Yüksel, S.: Stochastic stabilization of partially observed and multi-sensor systems driven by Gaussian noise under fixed-rate information constraints. IEEE Trans. Autom. Control, under review (2013)

    Google Scholar 

  11. Khargonekar, P.P., Ozguler, A.B.: Decentralized control and periodic feedback. IEEE Trans. Autom. Control 39, 877–882 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kobayashi, H., Hanafusa, H., Yoshikawa, T.: Controllability under decentralized information structure. IEEE Trans. Autom. Control 23, 182–188 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mahmoud, M.S.: Decentralized Systems with Design Constraints. Springer, London (2011)

    Book  MATH  Google Scholar 

  14. Matveev, A.S., Savkin, A.V.: Decentralized stabilization of linear systems via limited capacity communication networks, pp. 1155–1161. Seville, Spain (2005)

    Google Scholar 

  15. Matveev, A.S., Savkin, A.V.: Estimation and Control over Communication Networks. Birkhäuser, Boston (2008)

    Google Scholar 

  16. Naiqi, W., Renhou, L., Baosheng, H.: Decentralized controllability and observability, and decentralized stabilization. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 598–601, Aug 1988

    Google Scholar 

  17. Nair, G.N., Evans, R.J.: Cooperative networked stabilisability of linear systems with measurement noise. In: Proceedings of the 15th IEEE Mediterranean Conference Control and Automation, Athens, Greece, 2007

    Google Scholar 

  18. Nair, G.N., Evans, R.J., Caines, P.E.: Stabilising decentralised linear systems under data rate constraints. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3992–3997, Dec 2004

    Google Scholar 

  19. Orlitsky, A., Roche, J.R.: Coding for computing. IEEE Trans. Inf. Theor. 47, 903–917 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Özguner, Ü., Davison, E.J.: Sampling and decentralized fixed modes. In: Proceedings of the in American Control Conference, pp. 257–262, 1985

    Google Scholar 

  21. Park, S.Y., Sahai, A.: Network coding meets decentralized control: capacity-stabilizabililty equivalence. In: IEEE Conference on Decision and Control, pp. 4817–4822, Florida, 2011

    Google Scholar 

  22. Pradhan, S.S., Ramchandran, K.: Distributed source coding using syndromes (discus): design and construction. IEEE Trans. Inf. Theor. 49, 626–643 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Siljak, D.D.: Decentralized Control of Complex Systems. Academic, Boston (1991)

    Google Scholar 

  24. Singh, M.G.: Decentralised Control. North Holland, Amsterdam (1981)

    MATH  Google Scholar 

  25. Tatikonda, S.: Some scaling properties of large distributed control systems. In: Proceedings of the 42nd IEEE CDC, pp. 3142–3147, Dec 2003

    Google Scholar 

  26. Tatikonda, S.: Cooperative control under communication constraints. In: Proceedings of the IEEE Information Theory Workshop, pp. 243–246, Porto, Portugal, May 2008

    Google Scholar 

  27. Wang, S., Davison, E.J.: On the stabilization of decentralized control systems. IEEE Trans. Autom. Control 18, 473–478 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, S.H.: Stabilization of decentralized control systems via time-varying controllers. IEEE Trans. Autom. Control 27, 741–744 (1982)

    Article  MATH  Google Scholar 

  29. Willems, J.L.: Time-varying feedback for the stabilization of fixed modes in decentralized control systems. Automatica 25, 127–131 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wong, W.S.: Control communication complexity of distributed control systems. SIAM J. Control Optim. 48, 1722–1742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yao, A.C.C.: Some complexity questions related to distributive computing. In: Proceedings of the of the 11th Annual ACM Symposium on Theory of Computing, 1979

    Google Scholar 

  32. Yüksel, S., Başar, T.: On the absence of rate loss in decentralized sensor and controller structure for asymptotic stability. In: Proceedings of the American Control Conference, Minneapolis, MN, 2006

    Google Scholar 

  33. Yüksel, S., Başar, T.: Communication constraints for decentralized stabilizability with time-invariant policies. IEEE Trans. Autom. Control 52, 1060–1066 (2007)

    Article  Google Scholar 

  34. Yüksel, S., Başar, T.: Information theoretic study of the signaling problem in decentralized stabilization of noisy linear systems. In: Proceedings of the IEEE Conference on Decision and Control, New Orleans, 2007

    Google Scholar 

  35. Yüksel, S., Başar, T.: Optimal signaling policies for decentralized multi-controller stabilizability over communication channels. IEEE Trans. Autom. Control 52, 1969–1974 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yüksel, S., Başar, T. (2013). Stabilization of Decentralized Systems Over Communication Channels. In: Stochastic Networked Control Systems. Systems & Control: Foundations & Applications. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7085-4_9

Download citation

Publish with us

Policies and ethics