Polynomials orthogonal on the semicircle

  • Lothar Reichel
Part of the Contemporary Mathematicians book series (CM)


In two papers, jointly with Henry J. Landau and Gradimir V. Milovanović, Walter Gautschi investigates polynomials that are orthogonal with respect to a non-Hermitian inner product defined on the upper half of the unit circle in the complex plane. For special choices of the weight function, these polynomials are related to Jacobi polynomials. Their recurrence relation and properties of their zeros are investigated, and applications to Gauss quadrature are explored. We first discuss the importance of orthogonal polynomials that satisfy recurrence relations with few terms, and then focus on the special properties of orthogonal polynomials on the semicircle.



I would like to thank Gradimir Milovanović for comments and references.


  1. 1.
    G. S. Ammar, W. B. Gragg, and L. Reichel. Downdating of Szegő polynomials and data-fitting applications. Linear Algebra Appl., Second NIU Conference on Linear Algebra, Numerical Linear Algebra and Applications (DeKalb, IL, 1991). Linear Google Scholar
  2. 2.
    J. Baglama, D. Calvetti, and L. Reichel. IRBL: an implicitly restarted block-Lanczos method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comput., 24(5): 1650–1677, 2003.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Claude Brezinski. Biorthogonality and its applications to numerical analysis. Monographs and Textbooks in Pure and Applied Mathematics, 156, Marcel Dekker, New York, 1992. viii+166 pp. ISBN: 0-8247-8616-5.Google Scholar
  4. 4.
    C. Brezinski, M. Redivo-Zaglia, and H. Sadok. New look-ahead Lanczos-type algorithms for linear systems. Numer. Math., 83(1):53–85, 1999.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Franca Caliò, Marco Frontini, and Gradimir V. Milovanović. Numerical differentiation of analytic functions using quadratures on the semicircle. Comput. Math. Appl., 22(10):99–106, 1991.Google Scholar
  6. 6.
    Marcel G. de Bruin. Polynomials orthogonal on a circular arc. J. Comput. Appl. Math., 31(2):253–266, 1990.Google Scholar
  7. 7.
    Sylvan Elhay, Gene H. Golub, and Jaroslav Kautsky. Updating and downdating of orthogonal polynomials with data fitting applications. SIAM J. Matrix Anal. Appl., 12(2):327–353, 1991.Google Scholar
  8. 8.
    Gene H. Golub and Gérard Meurant. Matrices, moments and quadrature with applications. Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2010. xii+363 pp. ISBN: 978-0-691-14341-5.Google Scholar
  9. 9.
    William B. Gragg. The QR algorithm for unitary Hessenberg matrices. J. Comput. Appl. Math., 16(1):1–8, 1986.Google Scholar
  10. 10.
    Ulf Grenander and Gábor Szegő. Toeplitz forms and their applications. Second edition, Chelsea, New York, 1984. x+245 pp. ISBN: 0-8284-0321-X.Google Scholar
  11. 11.
    William B. Jones, Olav Njåstad, and W. J. Thron. Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle. Bull. London Math. Soc., 21(2):113–152, 1989.Google Scholar
  12. 12.
    Thomas Kailath. Linear estimation for stationary and near-stationary processes. In Modern signal processing, 59–128, Hemisphere Publ., Washington, DC, 1985.Google Scholar
  13. 13.
    Gradimir V. Milovanović. Some applications of the polynomials orthogonal on the semicircle. In Numerical methods (Miskolc, 1986), 625–634, Colloq. Math. Soc. János Bolyai, 50, North-Holland, Amsterdam, 1988.Google Scholar
  14. 14.
    Gradimir V. Milovanović. Complex orthogonality on the semicircle with respect to Gegenbauer weight: theory and applications. In Topics in mathematical analysis, 695–722, Ser. Pure. Math., 11, World Scientific Publ., Teaneck, NJ, 1989.Google Scholar
  15. 15.
    Gradimir V. Milovanović andPredrag M. Rajković. Geronimus concept of orthogonality for polynomials orthogonal on a circular arc. Rend. Mat. Appl. (7), 10(2):383–390, 1990.Google Scholar
  16. 16.
    Gradimir V. Milovanović. On polynomials orthogonal on the semicircle and applications. Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991). J. Comput. Appl. Math., 49(1–3):193–199, 1993.MathSciNetMATHGoogle Scholar
  17. 17.
    Gradimir V. Milovanović and Predrag M. Rajković. On polynomials orthogonal on a circular arc. J. Comput. Appl. Math., 51(1):1–13, 1994.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    M. S. Petković, T. Sakurai, and L. Rančić. Family of simultaneous methods of Hansen–Patrick’s type. Appl. Numer. Math., 50(3–4):489–510, 2004.Google Scholar
  19. 19.
    Michael Stewart. An error analysis of a unitary Hessenberg QR algorithm. SIAM J. Matrix Anal. Appl., 28(1):40–67, 2006.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lothar Reichel
    • 1
  1. 1.Department of Mathematical SciencesKent State UniversityKentUSA

Personalised recommendations