Skip to main content

NGS Improves the Diagnosis of X-Linked Intellectual Disability (XLID)

  • Chapter
  • First Online:
Next Generation Sequencing

Abstract

X-linked intellectual disability (XLID) is considered to be a collection of conditions that are each caused by mutation in one of the many X-linked genes associated with either a syndromic or nonsyndromic form of intellectual disability. A significant number of XLID conditions have been described, but only approximately 50 % of the causative XLID genes have been discovered. For affected individuals from families with clear or potentially X-linked inheritance, the strategy for next-generation sequencing (NGS) can be tailored appropriately, given the ability to focus sole attention on the X chromosome rather than the entire genome. The primary goal of this chapter is to focus on the principles associated with testing known XLID genes that have been included on various targeted NGS panels. These principles can be extended to other X-linked genes that may be implicated in XLID, as well as to other genes on the X chromosome with relevant medical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevenson RE, Schwartz CE (2009) X-linked intellectual disability: unique vulnerability of the male genome. Dev Diabil Res Rev 15:361–368

    Article  Google Scholar 

  2. Schalock RL, Borthwick-Duffy SA, Bradley VJ, Buntinx WHE, Coulter DL, Craig EM, Gomez SC, Lachapelle Y, Luckasson R, Reeve A, Shogren KA, Snell ME, Spreat S, Tassé MJ, Thompson JR, Verdugo-Alonso MA, Wehmeyer ML, Yeager MH (2009) Intellectual disability: definition, classification, and systems of supports, 11th edn. American Association of Intellectual and Developmental Disabilities, Washington, DC. ISBN 13: 978-1935304043

    Google Scholar 

  3. Mefford HC, Batshaw ML, Hoffman EP (2012) Genomics, intellectual disability, and autism. N Engl J Med 366(8):733–743

    Article  PubMed  CAS  Google Scholar 

  4. Veltman JA, Brunner HG (2012) De novo mutations in human genetic disease. Nat Rev Genet 13(8):565–575

    Article  PubMed  CAS  Google Scholar 

  5. Whibley AC, Plagnol V, Tarpey PS, Abidi F, Fullston T, Choma MK, Boucher CA, Shepherd L, Willatt L, Parkin G, Smith R, Futreal PA, Shaw M, Boyle J, Licata A, Skinner C, Stevenson RE, Turner G, Field M, Hackett A, Schwartz CE, Gecz J, Stratton MR, Raymond F (2010) Fine-scale survey of X chromosome copy number variants and indels underlying intellectual disability. Am J Hum Genet 87(2):173–188

    Article  PubMed  CAS  Google Scholar 

  6. Stevenson RE, Schwartz CE, Rogers RC (2012) Atlas of X-linked intellectual disability syndromes, 2nd edn. Oxford University Press, Oxford/New York. ISBN 13: 978-0199811793

    Google Scholar 

  7. Lubs HA, Stevenson RE, Schwartz CE (2012) Fragile X and X-linked intellectual disability: four decades of discovery. Am J Hum Genet 90(4):579–590

    Article  PubMed  CAS  Google Scholar 

  8. Shoubridge C, Gardner A, Schwartz CE, Hackett A, Field M, Gecz J (2012) Is there a Mendelian transmission ratio distortion of the c.429_452dup(24 bp) polyalanine tract ARX mutation? Eur J Hum Genet. doi:10.1038/ejhg.2012.61

    PubMed  Google Scholar 

  9. Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, O’Meara S, Latimer C, Dicks E, Menzies A, Stephens P, Blow M, Greenman C, Xue Y, Tyler-Smith C, Thompson D, Gray K, Andrews J, Barthorpe S, Buck G, Cole J, Dunmore R, Jones D, Maddison M, Mironenko T, Turner R, Turrell K, Varian J, West S, Widaa S, Wray P, Teague J, Butler A, Jenkinson A, Jia M, Richardson D, Shepherd R, Wooster R, Tejada MI, Martinez F, Carvill G, Goliath R, de Brouwer AP, van Bokhoven H, Van Esch H, Chelly J, Raynaud M, Ropers HH, Abidi FE, Srivastava AK, Cox J, Luo Y, Mallya U, Moon J, Parnau J, Mohammed S, Tolmie JL, Shoubridge C, Corbett M, Gardner A, Haan E, Rujirabanjerd S, Shaw M, Vandeleur L, Fullston T, Easton DF, Boyle J, Partington M, Hackett A, Field M, Skinner C, Stevenson RE, Bobrow M, Turner G, Schwartz CE, Gecz J, Raymond FL, Futreal PA, Stratton MR (2009) A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet 41(5):535–543

    Article  PubMed  CAS  Google Scholar 

  10. Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56(3):422–437

    Article  PubMed  CAS  Google Scholar 

  11. Dibbens LM, Tarpey PS, Hynes K, Bayly MA, Scheffer IE, Smith R, Bomar J, Sutton E, Vandeleur L, Shoubridge C, Edkins S, Turner SJ, Stevens C, O’Meara S, Tofts C, Barthorpe S, Buck G, Cole J, Halliday K, Jones D, Lee R, Madison M, Mironenko T, Varian J, West S, Widaa S, Wray P, Teague J, Dicks E, Butler A, Menzies A, Jenkinson A, Shepherd R, Gusella JF, Afawi Z, Mazarib A, Neufeld MY, Kivity S, Lev D, Lerman-Sagie T, Korczyn AD, Derry CP, Sutherland GR, Friend K, Shaw M, Corbett M, Kim HG, Geschwind DH, Thomas P, Haan E, Ryan S, McKee S, Berkovic SF, Futreal PA, Stratton MR, Mulley JC, Gécz J (2008) X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 40(6):776–781

    Article  PubMed  CAS  Google Scholar 

  12. Richards CS, Bale S, Bellissimo D, Das S, Grody W, Hegde M, Lyon E, Ward B, Molecular Subcommittee of the ACMG Laboratory Quality Assurance Committee (2007) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10(4):294–300, AC

    Article  Google Scholar 

  13. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  PubMed  CAS  Google Scholar 

  14. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Friez Ph.D., FACMG .

Editor information

Editors and Affiliations

Appendix: Profiles of the Most Common XLID Syndromes

Appendix: Profiles of the Most Common XLID Syndromes

(Gene, location, and brief clinical findings in addition to intellectual disability)

1.1 Replicated with Permission from Stevenson and Schwartz [1]

1.1.1 Aarskog Syndrome

FGD1, Xp11.21

Short stature, hypertelorism, downslanting palpebral fissures, joint hyperextensibility, shawl scrotum

1.1.2 Adrenoleukodystrophy

ABCD1, Xq28

Variable and progressive vision and hearing loss, spasticity, neurological deterioration associated with demyelination of the central nervous system and adrenal insufficiency

1.1.3 Aicardi syndrome

No gene, Xp22

Agenesis of the corpus callosum, lacunar chorioretinopathy, costovertebral anomalies, seizures in females

1.1.4 Allan-Herndon Syndrome

SLC16A2, Xq13

Generalized muscle hypoplasia, childhood hypotonia, ataxia, athetosis, dysarthria, progressing to spastic paraplegia

1.1.5 ARX-Related Syndromes

(includes Partington, Proud, West, X-linked lissencephaly with ambiguous genitalia (XLAG) syndromes and nonsyndromic XLID)

ARX, Xp22.3

Partington: dysarthria, dystonia, hyperreflexia, seizures. West: infantile spasms, hypsarrhythmia. Proud: microcephaly, ACC, spasticity, seizures, ataxia, genital anomalies. XLAG: lissencephaly, seizures, genital anomalies

1.1.6 ATRX Syndrome

(includes Chudley-Lowry, Carpenter-Waziri, Holmes-Gang, and Martinez spastic paraplegia syndromes and nonsyndromic XLID)

ATRX, Xq13.3

Short stature, microcephaly, hypotonic facies with hypertelorism, small nose, open mouth and prominent lips, brachydactyly, genital anomalies, hypotonia, in some cases hemoglobin H inclusions in erythrocytes

1.1.7 Christianson Syndrome

SLC9A6, Xq26

Short stature, microcephaly, long narrow face, large ears, long straight nose, prominent mandible, general asthenia, narrow chest, long thin digits, adducted thumbs, contractures, seizures, autistic features, truncal ataxia, ophthalmoplegia, mutism, incontinence, hypoplasia of the cerebellum, and brain stem

1.1.8 Coffin-Lowry

RPS6KA3, Xp22

Short stature, distinctive facies, large soft hands, hypotonia, joint hyperextensibility, skeletal changes

1.1.9 Creatine Transporter Deficiency

SLC6A8, Xq28

Nondysmorphic, autistic, possibly progressive

1.1.10 Duchenne Muscular Dystrophy

DMD, Xp21.3

Pseudohypertrophic muscular dystrophy

1.1.11 Fragile X Syndrome

FMR1, Xq27.3

Prominent forehead, long face, recessed midface, large ears, prominent mandible, macroorchidism

1.1.12 Hunter Syndrome

IDS, Xq28

Progressive coarsening of face, thick skin, cardiac valve disease, joint stiffening, dysostosis multiplex

1.1.13 Incontinentia Pigmenti

IKBKG, Xq28

Sequence of cutaneous blistering, verrucous thickening, and irregular pigmentation. May have associated CNS, ocular abnormalities

1.1.14 Lesch-Nyhan Syndrome

HPRT, Xq26

Choreoathetosis, spasticity, seizures, self-mutilation, uric acid urinary stones

1.1.15 Lowe Syndrome

OCRL, Wq26.1

Short stature, cataracts, hypotonia, renal tubular dysfunction

1.1.16 MECP2 Duplication Syndrome

MECP2, Xq28

Hypotonia, progressing to spastic paraplegia, recurrent infections

1.1.17 Menkes Syndrome

ATP7A, Xp13.3

Growth deficiency, full cheeks, sparse kinky hair, metaphyseal changes, limited spontaneous movement, hypertonicity, seizures, hypothermia, lethargy, arterial tortuosity, death in early childhood

1.1.18 Pelizaeus-Merzbacher Disease

PLP1, Xq21.1

Nystagmus, truncal hypotonia, progressive spastic paraplegia, ataxia, dystonia

1.1.19 Renpenning Syndrome

(includes Sutherland-Haan, cerebropalatocardiac, Golabi-Ito-Hall, Porteous syndromes)

PQBP1, Xp11.3

Short stature, microcephaly, small testes. May have ocular or genital abnormalities

1.1.20 Rett Syndrome

MECP2, Xq28

XLID in female, cessation and regression of development in early childhood, truncal ataxia features, acquired microcephaly

1.1.21 X-Linked Hydrocephaly

(includes mental retardation, aphasia, shuffling gait and abducted thumbs (MASA) spectrum)

L1CAM, Xq28

Hydrocephalus, adducted thumbs, spastic paraplegia

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friez, M.J., Basehore, M.J. (2013). NGS Improves the Diagnosis of X-Linked Intellectual Disability (XLID). In: Wong, LJ. (eds) Next Generation Sequencing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7001-4_9

Download citation

Publish with us

Policies and ethics