Young Diagrams and q-Binomial Coefficients

  • Richard P. Stanley
Chapter
Part of the Undergraduate Texts in Mathematics book series (UTM)

Abstract

A partitionλ of an integer n ≥ 0 is a sequence \(\lambda = (\lambda _{1},\lambda _{2},\ldots )\) of integers λ i ≥ 0 satisfying λ 1λ 2 ≥ ⋯ and i ≥ 1 λ i = n.

References

  1. 2.
    G.E. Andrews, The Theory of Partitions (Addison-Wesley, Reading, 1976)MATHGoogle Scholar
  2. 3.
    G.E. Andrews, K. Eriksson, Integer Partitions (Cambridge University Press, Cambridge, 2004)MATHCrossRefGoogle Scholar
  3. 30.
    E.B. Dynkin, Some properties of the weight system of a linear representation of a semisimple Lie group (in Russian). Dokl. Akad. Nauk SSSR (N.S) 71, 221–224 (1950)Google Scholar
  4. 31.
    E.B. Dynkin, The maximal subgroups of the classical groups. Am. Math. Soc. Transl. Ser. 2 6, 245–378 (1957); Translated from Trudy Moskov. Mat. Obsc. 1, 39–166Google Scholar
  5. 81.
    K.M. O’Hara, Unimodality of Gaussian coefficients: a constructive proof. J. Comb. Theor. Ser. A 53, 29–52 (1990)MathSciNetMATHCrossRefGoogle Scholar
  6. 82.
    W.V. Parker, The matrices AB and BA. Am. Math. Mon. 60, 316 (1953); Reprinted in Selected Papers on Algebra, ed. by S. Montgomery et al. (Mathematical Association of America, Washington), pp. 331–332Google Scholar
  7. 88.
    R.A. Proctor, A solution of two difficult combinatorial problems with linear algebra. Am. Math. Mon. 89, 721–734 (1982)MathSciNetMATHCrossRefGoogle Scholar
  8. 98.
    J. Schmid, A remark on characteristic polynomials. Am. Math. Mon. 77, 998–999 (1970); Reprinted in Selected Papers on Algebra, ed. by S. Montgomery et al. (Mathematical Association of America, Washington), pp. 332–333Google Scholar
  9. 101.
    R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebr. Discrete Meth. 1, 168–184 (1980)MathSciNetMATHCrossRefGoogle Scholar
  10. 107.
    R. Stanley, Enumerative Combinatorics, vol. 1, 2nd edn. (Cambridge University Press, Cambridge, 2012)Google Scholar
  11. 112.
    J.J. Sylvester, Proof of the hitherto undemonstrated fundamental theorem of invariants. Philos. Mag. 5, 178–188 (1878); Collected Mathematical Papers, vol. 3 (Chelsea, New York, 1973), pp. 117–126Google Scholar
  12. 123.
    D. Zeilberger, Kathy O’Hara’s constructive proof of the unimodality of the Gaussian polynomials. Am. Math. Mon. 96, 590–602 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Richard P. Stanley
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations