Advertisement

Cycles, Bonds, and Electrical Networks

  • Richard P. Stanley
Chapter
  • 5.3k Downloads
Part of the Undergraduate Texts in Mathematics book series (UTM)

Abstract

In this chapter we will deal with some interesting linear algebra related to the structure of a directed graph. Let D=(V,E) be a digraph. A function \(f : E \rightarrow \mathbb{R}\) is called a circulation if for every vertex vV we have
$$\displaystyle{ \sum _{{ e\in E \atop \mathrm{init}(e)=v} }f(e) =\sum _{{ e\in E \atop \mathrm{fin}(e)=v} }f(e). }$$
(11.1)
Thus if we think of the edges as pipes and f as measuring the flow (quantity per unit of time) of some commodity (such as oil) through the pipes in the specified direction (so that a negative value of f(e) means a flow of|f(e)|in the direction opposite the direction of e), then (11.1) simply says that the amount flowing into each vertex equals the amount flowing out. In other words, the flow is conservative. The figure below illustrates a circulation in a digraph D.

Keywords

Digraph Bond Space Cycle Space Planar Embedding Maximum Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 44.
    M. Gardner, Squaring the square, in The 2nd Scientific American Book of Mathematical Puzzles and Diversions (Simon and Schuster, New York, 1961)Google Scholar
  2. 62.
    N.D. Kazarinoff, R. Weitzenkamp, Squaring rectangles and squares. Am. Math. Mon. 80, 877–888 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 63.
    G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der Linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)Google Scholar
  4. 117.
    W.T. Tutte, Lectures on matroids. J. Res. Natl. Bur. Stand. Sect. B 69, 1–47 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 118.
    W.T. Tutte, The quest of the perfect square. Am. Math. Mon. 72, 29–35 (1965)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Richard P. Stanley
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations