Advertisement

The Evans Function for Boundary-Value Problems

  • Todd Kapitula
  • Keith Promislow
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 185)

Abstract

Previously we gathered information about a point spectrum either perturbatively, as in Chapter 6, or in cases where the linear operator has special structure, as arises from symmetries (Chapter 4.2) and in Hamiltonian systems (Chapter 7). In this chapter we construct the Evans function, an analytic function of the spectral parameter with the property that its zeros correspond to eigenvalues with the order of the zero equal to the algebraic multiplicity of the eigenvalue.

References

  1. [24]
    B. Barker, P. Noble, L. Rodrigues, and K. Zumbrun. Stability of periodic Kuramoto–Sivashinsky waves. Appl. Math. Lett., 25(5):824–829, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [42]
    J. Bronski and Z. Rapti. Modulational instability for nonlinear Schrödinger equations with a periodic potential. Dyn. Part. Diff. Eq., 2(4):335–355, 2005.MathSciNetzbMATHGoogle Scholar
  3. [77]
    J. Evans. Nerve axon equations, I: Linear approximations. Indiana U. Math. J., 21:877–955, 1972a.zbMATHCrossRefGoogle Scholar
  4. [78]
    J. Evans. Nerve axon equations, II: Stability at rest. Indiana U. Math. J., 22:75–90, 1972b.zbMATHCrossRefGoogle Scholar
  5. [79]
    J. Evans. Nerve axon equations, III: Stability of the nerve impulse. Indiana U. Math. J., 22:577–594, 1972c.zbMATHCrossRefGoogle Scholar
  6. [80]
    J. Evans. Nerve axon equations, IV: The stable and unstable impulse. Indiana U. Math. J., 24:1169–1190, 1975.zbMATHCrossRefGoogle Scholar
  7. [83]
    F. Finkel, A. González-López, and M. Rodríguez. A new algebraization of the Lamé equation. J. Phys. A: Math. Gen., 33:1519–1542, 2000.zbMATHCrossRefGoogle Scholar
  8. [89]
    T. Gallay and M. Hǎrǎguş. Stability of small periodic waves for the nonlinear Schrödinger equation. J. Diff. Eq., 234:544–581, 2007b.zbMATHCrossRefGoogle Scholar
  9. [91]
    R. Gardner. On the structure of the spectra of periodic travelling waves. J. Math. Pures Appl., 72:415–439, 1993.MathSciNetzbMATHGoogle Scholar
  10. [94]
    R. Gardner and C.K.R.T. Jones. A stability index for steady-state solutions of boundary-value problems for parabolic systems. J. Diff. Eq., 91:181–203, 1991a.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [111]
    R. Haberman. Applied Partial Differential Equations with Fourier Series and Bounday Value Problems. Pearson, New York, fourth edition, 2004.Google Scholar
  12. [124]
    M. Hǎrǎguş. Stability of periodic waves for the generalized BBM equation. Rev. Roumaine Maths. Pures Appl., 53:445–463, 2008.Google Scholar
  13. [125]
    M. Hǎrǎguş. Transverse spectral stability of small periodic traveling waves for the KP equation. Stud. Appl. Math., 126:157–185, 2011.MathSciNetCrossRefGoogle Scholar
  14. [128]
    M. Hǎrǎguş, E. Lombardi, and A. Scheel. Spectral stability of wave trains in the kawahara equation. J. Math. Fluid Mech., 8:482–509, 2006.MathSciNetCrossRefGoogle Scholar
  15. [129]
    T. Ivey and S. Lafortune. Spectral stability analysis for periodic traveling wave solutions of NLS and CGL perturbations. Physica D, 237:1750–1772, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [134]
    C.K.R.T. Jones. Stability of the travelling wave solutions of the Fitzhugh–Nagumo system. Trans. AMS, 286(2):431–469, 1984.zbMATHCrossRefGoogle Scholar
  17. [203]
    A. Markushevich. Theory of Functions. Chelsea Publishing, New York, 1985.Google Scholar
  18. [205]
    L. Meirovitch. Analytical Methods in Vibrations. Macmillan Series in Applied Mechanics, Macmillan, New York, 1967.zbMATHGoogle Scholar
  19. [220]
    R. Pego and M. Weinstein. Eigenvalues, and instabilities of solitary waves. Phil. Trans. R. Soc. Lond. A, 340:47–94, 1992.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Todd Kapitula
    • 1
  • Keith Promislow
    • 2
  1. 1.Department of Mathematics and StatisticsCalvin CollegeGrand RapidsUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations