Advertisement

Point Spectrum: Reduction to Finite-Rank Eigenvalue Problems

  • Todd Kapitula
  • Keith Promislow
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 185)

Abstract

The word bifurcation refers to changes in the number and stability of equilibria supported by a governing system as its parameters are varied. The classical bifurcation problem begins with an analysis of the point spectrum of the linearized operator associated with the equilibria under investigation. In this chapter we investigate finite-rank bifurcations for which a finite number of point eigenvalues cross the imaginary axis, either transversely or more degenerately, as the system parameters are varied. In particular, we derive the perturbative motion of such point spectra. This analysis is most informative in those cases for which the associated linearized operator initially has purely imaginary eigenvalues, and a small change in parameters moves the eigenvalues decisively off the imaginary axis.

Keywords

Imaginary Axis Point Spectrum Translational Symmetry Orbital Stability Simple Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [14]
    J. Angulo. Nonlinear stability of periodic travelling wave solutions to the Schrödinger and the modified Korteweg–de Vries equations. J. Diff. Eq., 235:1–30, 2007.zbMATHCrossRefGoogle Scholar
  2. [15]
    J. Angulo and J. Quintero. Existence and orbital stability of cnoidal waves for a 1D Boussinesq equation. Int. J. Math. Math. Sci., 2007:52020, 2007.MathSciNetCrossRefGoogle Scholar
  3. [17]
    I. Aranson and L. Kramer. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys., 74(1):99–143, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [41]
    J. Bronski and M. Johnson. The modulational instability for a generalized KdV equation. Arch. Rat. Mech. Anal., 197(2):357–400, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [43]
    J. Bronski, M. Johnson, and T. Kapitula. An index theorem for the stability of periodic traveling waves of KdV type. Proc. Roy. Soc. Edinburgh: Section A, 141(6):1141–1173, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [66]
    B. Deconinck and T. Kapitula. On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations. submitted.Google Scholar
  7. [68]
    B. Deconinck and M. Nivala. The stability analysis of the periodic traveling wave solutions of the mkdv equation. Stud. Appl. Math., 126:17–48, 2010.MathSciNetCrossRefGoogle Scholar
  8. [88]
    T. Gallay and M. Hǎrǎguş. Orbital stability of periodic waves for the nonlinear Schrödinger equation. J. Dyn. Diff. Eqns., 19:825–865, 2007a.zbMATHCrossRefGoogle Scholar
  9. [89]
    T. Gallay and M. Hǎrǎguş. Stability of small periodic waves for the nonlinear Schrödinger equation. J. Diff. Eq., 234:544–581, 2007b.zbMATHCrossRefGoogle Scholar
  10. [133]
    M. Johnson. Nonlinear stability of periodic traveling wave solutions of the generalized Korteweg–de Vries equation. SIAM J. Math. Anal., 41(5): 1921–1947, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [144]
    T. Kapitula. The Evans function and generalized Melnikov integrals. SIAM J. Math. Anal., 30(2):273–297, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [162]
    T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.zbMATHGoogle Scholar
  13. [217]
    J. Pava. Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Korteweg–de Vries equations. J. Diff. Eq., 235(1):1–30, 2007.zbMATHCrossRefGoogle Scholar
  14. [218]
    J. Pava, J. Bona, and M. Scialom. Stability of cnoidal waves. Adv. Diff. Eq., 11(12):1321–1374, 2006.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Todd Kapitula
    • 1
  • Keith Promislow
    • 2
  1. 1.Department of Mathematics and StatisticsCalvin CollegeGrand RapidsUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations