Asymptotic Stability of Waves in Dissipative Systems

  • Todd Kapitula
  • Keith Promislow
Part of the Applied Mathematical Sciences book series (AMS, volume 185)


A key motivation for investigating the spectrum of linear operators is to understand the stability of equilibria of nonlinear evolution equations, as well as to describe the flow in a neighborhood of manifolds of approximate equilibria.


Essential Spectrum Point Spectrum Decay Estimate Quadratic Estimate Spectral Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    In P. Kevrekidis, D. Frantzeskakis, and R. Carretero-González, editors, Emergent Nonlinear Phenomena in Bose–Einstein Condensates, volume 45 of Springer Series in Atomic, Molecular and Optical Physics. Springer-Verlag, New York, 2008.Google Scholar
  2. [5]
    M. Ablowitz, B. Prinari, and A. Trubatch. Discrete and Continuous Nonlinear Schrödinger Systems, volume 302 of London Math. Soc. Lecture Note Series. Cambridge University Press, Cambridge, 2004.Google Scholar
  3. [18]
    W. Arendt, C. Batty, M. Hieber, and F. Neubrander. Vector-Valued Laplace Transforms and Cauchy Problems. Springer-Verlag, New York, 2011.zbMATHCrossRefGoogle Scholar
  4. [25]
    P. Bates and C.K.R.T. Jones. Invariant manifolds for semilinear partial differential equations. Dynamics Reported, 2:1–38, 1989.MathSciNetCrossRefGoogle Scholar
  5. [28]
    M. Beck, H. Hupkes, B. Sandstede, and K. Zumbrun. Nonlinear stability of semidiscrete shocks for two-sided schemes. SIAM J. Math. Anal., 42: 857–903, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [29]
    T. Bellsky, A. Doelman, T. Kaper, and K. Promislow. Adiabatic stability under semi-strong interactions: the weakly damped regime. to appear in Indiana U. Math. J., 2013.Google Scholar
  7. [40]
    P. Bressloff and S. Folias. Front bifurcations in an excitatory neural network. SIAM J. Appl. Math., 65:131–151, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [53]
    C. Chicone and Y. Latushkin. Evolution Semigroups in Dynamical Systems and Differential Equations, volume 70 of Math. Surv. Monogr. American Mathematical Society, Providence, RI, 1999.Google Scholar
  9. [64]
    E. Cytrynbaum and J. Keener. Stability conditions for the traveling pulse: Modifying the restitution hypothesis. Chaos, 12(3):788–789, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [70]
    A. Doelman and T. Kaper. Semi-strong pulse interactions in a class of coupled reaction–diffusion equations. SIAM J. Appl. Dyn. Sys., 2(1):53–96, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [73]
    A. Doelman, T. Kaper, and K. Promislow. Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal., 38(6):1760–1787, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [76]
    K. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations. Springer-Verlag, New York, 2000.zbMATHGoogle Scholar
  13. [81]
    L. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998.Google Scholar
  14. [84]
    S. Folias and P. Bressloff. Breathing pulses in an excitatory neural network. SIAM J. Appl. Dyn. Sys., 3:378–407, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [85]
    S. Folias and P. Bressloff. Stimulus-locked waves and breathers in an excitatory neural network. SIAM J. Appl. Math., 65:2067–2092, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [95]
    R. Gardner and C.K.R.T. Jones. Stability of travelling wave solutions of diffusive predator–prey systems. Trans. AMS, 327(2):465–524, 1991b.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [96]
    R. Gardner and K. Zumbrun. The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math., 51(7): 797–855, 1998.MathSciNetCrossRefGoogle Scholar
  18. [99]
    F. Gesztesy, C.K.R.T. Jones, Y. Latushkin, and M. Stanislavova. A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations. Indiana U. Math. J., 49(1):221–243, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [102]
    A. Ghazaryan, Y. Latushkin, S. Schechter, and A. de Souza. Stability of gasless combustion fronts in one-dimensional solids. Arch. Rat. Mech. Anal., 198:981–1030, 2010a.zbMATHCrossRefGoogle Scholar
  20. [103]
    A. Ghazaryan, Y. Latushkin, and S. Schecter. Stability of traveling waves for a class of reaction–diffusion systems that arise in chemical reaction models. SIAM J. Math. Anal., 42:2434–2472, 2010b.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [104]
    A. Ghazaryan, Y. Latushkin, and S. Schechter. Stability of traveling waves for degenerate systems of reaction –diffusion equations. Indiana U. Math. J., 60:443–472, 2011.zbMATHCrossRefGoogle Scholar
  22. [106]
    J. Goldstein. Semigroups of Linear Operators and Applications. Oxford University Press, New York, 1985.zbMATHGoogle Scholar
  23. [115]
    B. Helffer and J. Sjöstrand. From resolvent bounds to semigroup bounds. arXiv1001.4171v1, 2013.Google Scholar
  24. [117]
    P. Howard. Pointwise estimates for the stability for scalar conservation laws. PhD thesis, Indiana University, 1998.Google Scholar
  25. [118]
    P. Howard and K. Zumbrun. Stability of undercompressive shock profiles. J. Diff. Eq., 225(1):308–360, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [123]
    H. Hupkes and B. Sandstede. Stability of pulse solutions for the discrete Fitzhugh–Nagumo system. Trans. Amer. Math. Soc., 365:251–301, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [138]
    C.K.R.T. Jones and M. Romeo. Stability of neuronal pulses composed of two concatenated unstable kinks. Phys. Rev. E, 63:011904, 2001.Google Scholar
  28. [139]
    C.K.R.T. Jones, R. Gardner, and T. Kapitula. Stability of travelling waves for nonconvex scalar conservation laws. Comm. Pure Appl. Math., 46: 505–526, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [141]
    T. Kapitula. On the stability of travelling waves in weighted L spaces. J. Diff. Eq., 112(1):179–215, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [152]
    T. Kapitula and B. Sandstede. Stability of bright solitary wave solutions to perturbed nonlinear Schrödinger equations. Physica D, 124(1–3):58–103, 1998c.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [160]
    T. Kapitula, P. Kevrekidis, and Z. Chen. Three is a crowd: Solitary waves in photorefractive media with three potential wells. SIAM J. Appl. Dyn. Sys., 5(4):598–633, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [168]
    S. Kawashima and A. Matsumura. Asymptotic stability of travelling wave solutions of systems for one-dimensional gas motion. Comm. Math. Phys., 101:97–127, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [169]
    P. Kevrekidis. The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computation, and Physical Perspectives, volume 232 of Springer Tracts in Modern Physics. Springer-Verlag, New York, 2009.Google Scholar
  34. [171]
    P. Kevrekidis and M. Weinstein. Dynamics of lattice kinks. Physica D, 142 (1–2):113–152, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [172]
    P. Kevrekidis, R. Carretero-González, G. Theocharis, D. Frantzeskakis, and B. Malomed. Stability of dark solitons in a Bose–Einstein condensate trapped in an optical lattice. Phys. Rev. A, 68(3):035602, 2003.Google Scholar
  36. [186]
    Y. Latushkin and V. Yurov. Stability estimates for semigroups on Banach spaces. to appear in Disc. Cont. Dyn. Sys. Ser. B, 2013.Google Scholar
  37. [209]
    R. Moore and K. Promislow. Renormalization group reduction of pulse dynamics in thermally loaded optical parametric oscillators. Physica D, 206:62–81, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [210]
    R. Moore, W. Kath, B. Sandstede, C.K.R.T. Jones, and J. Alexander. Stability of multiple pulses in optical fibers with phase-sensitive amplification and noise. Optics Comm., 195:1–28, 2001.CrossRefGoogle Scholar
  39. [219]
    A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983.zbMATHCrossRefGoogle Scholar
  40. [223]
    D. Pelinovsky. Localization in Periodic Potentials. Cambridge University Press, New York, 2011.zbMATHCrossRefGoogle Scholar
  41. [232]
    D. Pelinovsky, P. Kevrekidis, and D. Frantzeskakis. Persistence and stability of discrete vortices in nonlinear Schrödinger lattices. Physica D, 212:20–53, 2005a.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [233]
    D. Pelinovsky, P. Kevrekidis, and D. Frantzeskakis. Stability of discrete solitons in nonlinear Schrödinger lattices. Physica D, 212:1–19, 2005b.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [236]
    K. Promislow. A renormalization method for modulational stability of quasi-steady patterns in dispersive systems. SIAM J. Math. Anal., 33(6): 1455–1482, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [237]
    K. Promislow and J. Kutz. Bifurcation and asymptotic stability in the large detuning limit of the optical parametric oscillator. Nonlinearity, 13: 675–698, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  45. [238]
    J. Prüss. On the spectrum of C 0-semigroups. Trans. Amer. Math. Soc., 284:847–857, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [244]
    M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York, 1980.zbMATHGoogle Scholar
  47. [247]
    G. Samaey and B. Sandstede. Determining stability of pulses for partial differential equations with time delays. Dyn. Sys., 20:201–222, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [249]
    B. Sandstede. Center manifolds for homoclinic solutions. J. Dyn. Diff. Eq., 12: 449–510, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [251]
    B. Sandstede. Evans functions and nonlinear stability of travelling waves in neuronal network models. Int. J. Bif. Chaos, 17:2693–2704, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  50. [259]
    D. Sattinger. On the stability of waves of nonlinear parabolic systems. Advances in Math., 22:312–355, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  51. [265]
    J. Smoller. Shock Waves and Reaction Diffusion Equations. Springer-Verlag, New York, 1983.zbMATHCrossRefGoogle Scholar
  52. [274]
    E. Titchmarsh. The Theory of Functions. Oxford University Press, Oxford, UK, second edition, 1976.Google Scholar
  53. [284]
    J. Yang. Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, 2010.Google Scholar
  54. [290]
    K. Zumbrun. Multidimensional stability of planar viscous shock waves. In Advances in the theory of shock waves, volume 47 of Prog. Nonlinear Diff. Eq. Appl., pp. 307–516. Birkhäuser Boston, Boston, 2001.Google Scholar
  55. [292]
    K. Zumbrun. Instantaneous shock location and one-dimensional nonlinear stability of viscous shock waves. Quart. Appl. Math., 69(1):177–202, 2011a.MathSciNetzbMATHGoogle Scholar
  56. [293]
    K. Zumbrun. Stability and dynamics of viscous shock waves. In Nonlinear Conservation Laws and Applications, volume 153 of IMA Vol. Math. Appl., pp. 123–167. Springer, New York, 2011b.Google Scholar
  57. [295]
    K. Zumbrun and P. Howard. Pointwise semigroup methods and stability of viscous shock waves. Indiana U. Math. J., 47:741–781, 1998.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Todd Kapitula
    • 1
  • Keith Promislow
    • 2
  1. 1.Department of Mathematics and StatisticsCalvin CollegeGrand RapidsUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations