Skip to main content

Cellular and Molecular Mechanisms of Resveratrol and Its Derivatives

  • Chapter
  • First Online:
Bioactive Polyphenols from Wine Grapes

Part of the book series: SpringerBriefs in Cell Biology ((SBCB))

  • 1374 Accesses

Abstract

The cellular mechanisms and proximal targets responsible for resveratrol’s biological activity in mammalian cells are a subject of continued debate amongst the scientific community. One of the earliest activities attributed to resveratrol was that of an estrogen receptor agonist. In this chapter we highlight the striking parallels that exist between the effects elicited by resveratrol and its derivatives, and those associated with estrogen, under a variety of experimental conditions. We discuss other prevalent mechanisms that have been put forward to account for resveratrol’s cellular and systemic effects, including direct interactions with sirtuins, AMPK activation, and phosphodiesterase inhibition. In each instance we relate these mechanisms to estrogen signalling pathways, and build the argument that resveratrol’s properties as an estrogen receptor agonist are central to its biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal M, Kumar V, Kashyap MP, Khanna VK, Randhawa GS, Pant AB (2011) Ischemic insult induced apoptotic changes in PC12 cells: protection by trans resveratrol. Eur J Pharmacol 666:5–11

    PubMed  CAS  Google Scholar 

  • Aguirre CC, Baudry M (2009) Progesterone reverses 17β-estradiol-mediated neuroprotection and BDNF induction in cultured hippocampal slices. Eur J Neurosci 29:447–454

    PubMed  Google Scholar 

  • Aguirre C, Jayaraman A, Pike C, Baudry M (2010) Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-β. J Neurochem 115:1277–1287

    PubMed  CAS  Google Scholar 

  • Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C, Salmona M, Caccia S, Negro A, Forloni G (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-­beta (1-42) peptide. J Neurochem 2110(5):1445–1456

    Google Scholar 

  • Anter E, Chen K, Shapira OM, Karas RH, Keaney JF Jr (2005) p38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols. Circ Res 96:1072–1078

    PubMed  CAS  Google Scholar 

  • Babiker FA, Lips DJ, Delvaux E, Zandberg P, Janssen BJ, Prinzen F, van Eys G, Grohé C, Doevendans PA (2007) Oestrogen modulates cardiac ischaemic remodelling through oestrogen receptor-specific mechanisms. Acta Physiol (Oxf) 189:23–31

    CAS  Google Scholar 

  • Barros RP, Gustafsson JÅ (2011) Estrogen receptors and the metabolic network. Cell Metab 14:289–299

    PubMed  CAS  Google Scholar 

  • Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007) Effects of resveratrol on lifespan in Drosopholia melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128:546–552

    PubMed  CAS  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-­Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    PubMed  CAS  Google Scholar 

  • Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74:619–624

    PubMed  CAS  Google Scholar 

  • Bhat KP, Pezzuto JM (2001) Resveratrol exhibits cytostatic and antiestrogenic properties with human endometrial adenocarcinoma (Ishikawa) cells. Cancer Res 61:6137–6144

    PubMed  CAS  Google Scholar 

  • Bhat KP, Lantvit D, Christov K, Mehta RG, Moon RC, Pezzuto JM (2001) Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res 61:7456–7463

    PubMed  CAS  Google Scholar 

  • Blanchet J, Longpré F, Bureau G, Morissette M, DiPaolo T, Bronchti G, Martinoli MG (2008) Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 32:1243–1250

    PubMed  CAS  Google Scholar 

  • Boily G, He XH, Pearce B, Jardine K, McBurney MW (2009) SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28:2882–2893

    PubMed  CAS  Google Scholar 

  • Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280:17187–17195

    PubMed  CAS  Google Scholar 

  • Bourque M, Dluzen DE, Di Paolo T (2009) Neuroprotective actions of sex steroids in Parkinson’s disease. Front Neuroendocrinol 30:142–157

    PubMed  CAS  Google Scholar 

  • Bowers JL, Tyulmenkov VV, Jernigan SC, Klinge CM (2000) Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology 141:3657–3667

    PubMed  CAS  Google Scholar 

  • Brandenberger AW, Tee MK, Lee JY, Chao V, Jaffe RB (1997) Tissue distribution of estrogen receptors alpha (ER-alpha) and beta (ER-beta) mRNA in the midgestational human fetus. J Clin Endocrinol Metab 82(10):3509–3512

    PubMed  CAS  Google Scholar 

  • Brinton RD (2008) Estrogen regulation of glucose metabolism and mitochondrial function: therapeutic implications for prevention of Alzheimer’s disease. Adv Drug Deliv Rev 60:1504–1511

    PubMed  CAS  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    PubMed  CAS  Google Scholar 

  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    PubMed  CAS  Google Scholar 

  • Carswell HV, Macrae IM, Gallagher L, Harrop E, Horsburgh KJ (2004) Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia. Am J Physiol Heart Circ Physiol 287:H1501–H1504

    PubMed  CAS  Google Scholar 

  • Castillo-Pichardo L, Dharmawardhane SF (2012) Grape polyphenols inhibit akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer 64:1058–1069

    PubMed  CAS  Google Scholar 

  • Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, Light PE, Dyck JR (2008) Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 283:24194–24201

    PubMed  CAS  Google Scholar 

  • Chen JQ, Cammarata PR, Baines CP, Yager JD (2009) Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta 1793:1540–1570

    PubMed  CAS  Google Scholar 

  • Chen S, Li Z, Li W, Shan Z, Zhu W (2011) Resveratrol inhibits cell differentiation in 3T3-L1 adipocytes via activation of AMPK. Can J Physiol Pharmacol 89:793–799

    PubMed  CAS  Google Scholar 

  • Cheng Y, Zhang HT, Sun L, Guo S, Ouyang S, Zhang Y, Xu J (2006) Involvement of cell adhesion molecules in polydatin protection of brain tissues from ischemia-reperfusion injury. Brain Res 1110:193–200

    PubMed  CAS  Google Scholar 

  • Csiszar A, Labinskyy N, Pinto JT, Ballabh P, Zhang H, Losonczy G, Pearson K, de Cabo R, Pacher P, Zhang C, Ungvari Z (2009) Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 297:H13–H20

    PubMed  CAS  Google Scholar 

  • Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS (2009) Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic Biol Med 46:1589–1597

    PubMed  Google Scholar 

  • Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 104:7217–7222

    PubMed  CAS  Google Scholar 

  • Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002

    PubMed  CAS  Google Scholar 

  • D’Eon TM, Souza SC, Aronovitz M, Obin MS, Fried SK, Greenberg AS (2005) Estrogen regulation of adiposity and fuel partitioning. Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J Biol Chem 280:35983–35991

    PubMed  Google Scholar 

  • D’Eon TM, Rogers NH, Stancheva ZS, Greenberg AS (2008) Estradiol and the estradiol metabolite, 2-hydroxyestradiol, activate AMP-activated protein kinase in C2C12 myotubes. Obesity (Silver Spring) 16:1284–1288

    Google Scholar 

  • Dell’Agli M, Galli GV, Vrhovsek U, Mattivi F, Bosisio E (2005) In vitro inhibition of human cGMP-specific phosphodiesterase-5 by polyphenols from red grapes. J Agric Food Chem 53(6):1960–1965

    PubMed  CAS  Google Scholar 

  • Dernek S, Ikizler M, Erkasap N, Ergun B, Koken T, Yilmaz K, Sevin B, Kaygisiz Z, Kural T (2004) Cardioprotection with resveratrol pretreatment: improved beneficial effects over standard treatment in rat hearts after global ischemia. Scand Cardiovasc J 38:245–254

    PubMed  CAS  Google Scholar 

  • Di Liberto V, Mäkelä J, Korhonen L, Olivieri M, Tselykh T, Mälkiä A, Do Thi H, Belluardo N, Lindholm D, Mudò G (2012) Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice. Neuropharmacology 62:1011–1018

    PubMed  Google Scholar 

  • Duckles SP, Miller VM (2010) Hormonal modulation of endothelial NO production. Pflugers Arch – EurJ Physiol 459:841–851

    CAS  Google Scholar 

  • El-Mowafy AM, Alkhalaf M (2003) Resveratrol activates adenylyl-cyclase in human breast cancer cells: a novel, estrogen receptor-independent cytostatic mechanism. Carcinogenesis 24(5):869–873

    PubMed  CAS  Google Scholar 

  • Elangovan S, Ramachandran S, Venkatesan N, Ananth S, Gnana-Prakasam JP, Martin PM, Browning DD, Schoenlein PV, Prasad PD, Ganapathy V, Thangaraju M (2011) SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor α in breast cancer. Cancer Res 71(21):6654–6664

    PubMed  CAS  Google Scholar 

  • Elbaz A, Rivas D, Duque G (2009) Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice. Biogerontology 10(6):747–755

    PubMed  CAS  Google Scholar 

  • Faulds MH, Zhao C, Dahlman-Wright K, Gustafsson JÅ (2012) The diversity of sex steroid action: regulation of metabolism by estrogen signaling. J Endocrinol 212:3–12

    PubMed  CAS  Google Scholar 

  • Filardo EJ, Quinn JA, Frackelton AR Jr, Bland KI (2002) Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 16(1):70–84

    Google Scholar 

  • Fitzpatrick DF, Hirschfield SL, Coffey RG (1993) Effects of red and white wine on endothelium-­dependent vasorelaxation of rat aort and human coronary arteries. Am J Physiol 275:H1183–H1190

    Google Scholar 

  • Fukui M, Choi HJ, Zhu BT (2010) Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med 49(5):800–813

    PubMed  CAS  Google Scholar 

  • Gabel SA, Walker VR, London RE, Steenbergen C, Korach KS, Murphy E (2005) Estrogen receptor beta mediates gender differences in ischemia/reperfusion injury. J Mol Cell Cardiol 38:289–297

    PubMed  CAS  Google Scholar 

  • Gehm BD, McAndrews JM, Chien PY, Jameson JL (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA 94:14138–14143

    PubMed  CAS  Google Scholar 

  • Ghosh HS, McBurney M, Robbins PD (2010) SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5(2):e9199

    PubMed  CAS  Google Scholar 

  • Gorres BK, Bomhoff GL, Morris JK, Geiger PC (2011) In vivo stimulation of oestrogen receptor α increases insulin-stimulated skeletal muscle glucose uptake. J Physiol 589:2041–2054

    PubMed  CAS  Google Scholar 

  • Guo J, Krause DN, Horne J, Weiss JH, Li X, Duckles SP (2010) Estrogen-receptor-mediated protection of cerebral endothelial cell viability and mitochondrial function after ischemic insult in vitro. J Cereb Blood Flow Metab 30:545–554

    PubMed  CAS  Google Scholar 

  • Guo J, Duckles SP, Weiss JH, Li X, Krause DN (2012) 17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-­glucose deprivation/reperfusion. Free Radic Biol Med 52:2151–2160

    PubMed  CAS  Google Scholar 

  • Han HJ, Lee YH, Park SH (2000) Estradiol-17beta-BSA stimulates Ca(2+) uptake through nongenomic pathways in primary rabbit kidney proximal tubule cells: involvement of cAMP and PKC. J Cell Physiol 183(1):37–44

    Google Scholar 

  • Han S, Choi JR, Soon Shin K, Kang SJ (2012) Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice. Brain Res 5(1483):112–117

    Google Scholar 

  • Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908

    PubMed  CAS  Google Scholar 

  • Hirschberg AL (2012) Sex hormones, appetite and eating behaviour in women. Maturitas 71:248–256

    PubMed  CAS  Google Scholar 

  • Hoffmann S, Spitkovsky D, Radicella JP, Epe B, Wiesner RJ (2004) Reactive oxygen species derived from the mitochondrial respiratory chain are not responsible for the basal levels of oxidative base modifications observed in nuclear DNA of Mammalian cells. Free Radic Biol Med 36(6):765–773

    PubMed  CAS  Google Scholar 

  • Horsburgh K, Macrae IM, Carswell H (2002) Estrogen is neuroprotective via an apolipoprotein E-dependent mechanism in a mouse model of global ischemia. J Cereb Blood Flow Metab 22:1189–1195

    PubMed  CAS  Google Scholar 

  • Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283:20015–20026

    PubMed  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196

    PubMed  CAS  Google Scholar 

  • Hsieh YC, Choudhry MA, Yu HP, Shimizu T, Yang S, Suzuki T, Chen J, Bland KI, Chaudry IH (2006) Inhibition of cardiac PGC-1alpha expression abolishes ERbeta agonist-mediated cardioprotection following trauma-hemorrhage. FASEB J 20:1109–1117

    PubMed  CAS  Google Scholar 

  • Hu Y, Liu J, Wang J, Liu Q (2011) The controversial links among calorie restriction, SIRT1, and resveratrol. Free Radic Biol Med 2011(51):250–256

    Google Scholar 

  • Hwang JT, Kwon DY, Park OJ, Kim MS (2008) Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes Nutr 2(4):323–326

    PubMed  CAS  Google Scholar 

  • Ji H, Zhang X, Du Y, Liu H, Li S, Li L (2012) Polydatin modulates inflammation by decreasing NF-κB activation and oxidative stress by increasing Gli1, Ptch1, SOD1 expression and ameliorates blood-brain barrier permeability for its neuroprotective effect in pMCAO rat brain. Brain Res Bull 87:50–59

    PubMed  CAS  Google Scholar 

  • Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, Kennedy BK (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280:17038–17045

    PubMed  CAS  Google Scholar 

  • Kairisalo M, Bonomo A, Hyrskyluoto A, Mudò G, Belluardo N, Korhonen L, Lindholm D (2011) Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells. Neurosci Lett 488(3):263–266

    PubMed  CAS  Google Scholar 

  • Kanda N, Watanabe S (2002) 17beta-estradiol enhances vascular endothelial growth factor production and dihydrotestosterone antagonizes the enhancement via the regulation of adenylate cyclase in differentiated THP-1 cells. J Invest Dermatol 118(3):519–529

    PubMed  CAS  Google Scholar 

  • Khan MM, Ahmad A, Ishrat T, Khan MB, Hoda MN, Khuwaja G, Raza SS, Khan A, Javed H, Vaibhav K, Islam F (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 1328:139–151

    PubMed  CAS  Google Scholar 

  • Kim JY, Jo KJ, Kim BJ, Baik HW, Lee SK (2012) 17β-estradiol induces an interaction between adenosine monophosphate-activated protein kinase and the insulin signaling pathway in 3T3-­L1 adipocytes. Int J Mol Med, In Press

    Google Scholar 

  • Klinge CM, Blankenship KA, Risinger KE, Bhatnagar S, Noisin EL, Sumanasekera WK, Zhao L, Brey DM, Keynton RS (2005) Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J Biol Chem 280:7460–7468

    PubMed  CAS  Google Scholar 

  • Klinge CM (2008) Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem 105(6):1342–1351

    PubMed  CAS  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122

    PubMed  Google Scholar 

  • Leitman DC, Paruthiyil S, Vivar OI, Saunier EF, Herber CB, Cohen I, Tagliaferri M, Speed TP (2010) Regulation of specific target genes and biological responses by estrogen receptor subtype agonists. Curr Opin Pharmacol 10(6):629–636

    PubMed  CAS  Google Scholar 

  • Li H, Xia N, Förstermann U. (2012) Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 26:102–110

    PubMed  CAS  Google Scholar 

  • Li Y, Xu W, McBurney MW, Longo VD (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8:38–48

    PubMed  Google Scholar 

  • Lin JN, Lin VC, Rau KM, Shieh PC, Kuo DH, Shieh JC, Chen WJ, Tsai SC, Way TD (2010) Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. J Agric Food Chem 58:1584–1592

    PubMed  CAS  Google Scholar 

  • Lin VC, Tsai YC, Lin JN, Fan LL, Pan MH, Ho CT, Wu JY, Way TD (2012) Activation of AMPK by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells. J Agric Food Chem 60:6399–6407

    PubMed  CAS  Google Scholar 

  • Magyar K, Halmosi R, Palfi A, Feher G, Czopf L, Fulop A, Battyany I, Sumegi B, Toth K, Szabados E (2012) Cardioprotection by resveratrol: a human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc 50:179–187

    PubMed  CAS  Google Scholar 

  • Mandusic V, Dimitrijevic B, Nikolic-Vukosavljevic D, Neskovic-Konstantinovic Z, Kanjer K, Hamann U (2012) Different associations of estrogen receptor β isoforms, ERβ1 and ERβ2, expression levels with tumor size and survival in early- and late-onset breast cancer. Cancer Lett 321(1):73–79

    PubMed  CAS  Google Scholar 

  • Mattingly KA, Ivanova MM, Riggs KA, Wickramasinghe NS, Barch MJ, Klinge CM (2008) Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol 22:609–622

    PubMed  CAS  Google Scholar 

  • Movahed A, Yu L, Thandapilly SJ, Louis XL, Netticadan T (2012) Resveratrol protects adult cardiomyocytes against oxidative stress mediated cell injury. Arch Biochem Biophys 527(2):74–80

    PubMed  CAS  Google Scholar 

  • Mokni M, Limam F, Elkahoui S, Amri M, Aouani E (2007) Strong cardioprotective effect of resveratrol, a red wine polyphenol, on isolated rat hearts after ischemia/reperfusion injury. Arch Biochem Biophys 457:1–6

    PubMed  CAS  Google Scholar 

  • Motylewska E, Stasikowska O, Mełeń-Mucha G (2009) The inhibitory effect of diarylpropionitrile, a selective agonist of estrogen receptor beta, on the growth of MC38 colon cancer line. Cancer Lett 276(1):68–73

    PubMed  CAS  Google Scholar 

  • Muthusamy S, Andersson S, Kim HJ, Butler R, Waage L, Bergerheim U, Gustafsson JÅ (2011) Estrogen receptor β and 17β-hydroxysteroid dehydrogenase type 6, a growth regulatory pathway that is lost in prostate cancer. Proc Natl Acad Sci USA 108(50):20090–20094

    PubMed  CAS  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280:16456–16460

    PubMed  CAS  Google Scholar 

  • Nikolic I, Liu D, Bell JA, Collins J, Steenbergen C, Murphy E (2007) Treatment with an estrogen receptor-beta-selective agonist is cardioprotective. J Mol Cell Cardiol 42:769–780

    PubMed  CAS  Google Scholar 

  • Nilsson S, Koehler KF, Gustafsson JÅ (2011) Development of subtype-selective oestrogen receptor-­based therapeutics. Nat Rev Drug Discov 10:778–792

    PubMed  CAS  Google Scholar 

  • Ostadal B, Netuka I, Maly J, Besik J, Ostadalova I (2009) Gender differences in cardiac ischemic injury and protection-experimental aspects. Exp Biol Med 234:1011–1019

    CAS  Google Scholar 

  • Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285(11):8340–8351

    PubMed  CAS  Google Scholar 

  • Park CE, Kim MJ, Lee JH, Min BI, Bae H, Choe W, Kim SS, Ha J (2007) Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med 39:222–229

    PubMed  CAS  Google Scholar 

  • Park HR, Kong KH, Yu BP, Mattson MP, Lee JJ (2012) Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. Biol Chem 287:42588–42600

    Google Scholar 

  • Pedram A, Razandi M, Wallace DC, Levin ER (2006) Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 17(5):2125–2137

    Google Scholar 

  • Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012(15):675–690

    Google Scholar 

  • Razmara A, Duckles SP, Krause DN, Procaccio V (2007) Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Res 1176:71–81

    PubMed  CAS  Google Scholar 

  • Raval AP, Dave KR, Pérez-Pinzón MA (2006) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26:1141–1147

    PubMed  CAS  Google Scholar 

  • Ren J, Fan C, Chen N, Huang J, Yang Q (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem Res 36:2352–2362

    PubMed  CAS  Google Scholar 

  • Rivera L, Moró R, Zarzuelo A, Galisteo M (2009) Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol 77:1053–1063

    PubMed  CAS  Google Scholar 

  • Robb EL, Page MM, Wiens BE, Stuart JA (2008a) Molecular mechanisms of oxidative stress resistance induced by resveratrol: specific and progressive induction of MnSOD. Biochem Biophys Res Commun 367:406–412

    PubMed  CAS  Google Scholar 

  • Robb EL, Winkelmolen L, Visanji N, Brotchie J, Stuart JA (2008b) Dietary resveratrol administration increases MnSOD expression and activity in mouse brain. Biochem Biophys Res Commun 372:254–259

    PubMed  CAS  Google Scholar 

  • Robb EL, Stuart JA (2011) Resveratrol interacts with estrogen receptor-β to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase. Free Radic Biol Med 50(7):821–831

    PubMed  CAS  Google Scholar 

  • Rogers NH, Witczak CA, Hirshman MF, Goodyear LJ, Greenberg AS (2009) Estradiol stimulates Akt, AMP-activated protein kinase (AMPK) and TBC1D1/4, but not glucose uptake in rat soleus. Biochem Biophys Res Commun 382:646–650

    PubMed  CAS  Google Scholar 

  • Sarsour EH, Kalen AL, Xiao Z, Veenstra TD, Chaudhuri L, Venkataraman S, Reigan P, Buettner GR, Goswami PC (2012) Manganese superoxide dismutase regulates a metabolic switch during the mammalian cell cycle. Cancer Res 72(15):3807–3816

    PubMed  CAS  Google Scholar 

  • Schleipen B, Hertrampf T, Fritzemeier KH, Kluxen FM, Lorenz A, Molzberger A, Velders M, Diel P (2011) ERβ-specific agonists and genistein inhibit proliferation and induce apoptosis in the large and small intestine. Carcinogenesis 32(11):1675–1683

    PubMed  CAS  Google Scholar 

  • Schini-Kerth VB, Auger C, Etienne-Selloum N, Chataigneau T (2010) Polyphenol-induced endothelium-dependent relaxations role of NO and EDHF. Adv Pharmacol 60:133–175

    PubMed  CAS  Google Scholar 

  • Seifert EL, Caron AZ, Morin K, Coulombe J, He XH, Jardine K, Dewar-Darch D, Boekelheide K, Harper ME, McBurney MW (2012) SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice. FASEB J 26:555–566

    PubMed  CAS  Google Scholar 

  • Sequeira J, Boily G, Bazinet S, Saliba S, He X, Jardine K, Kennedy C, Staines W, Rousseaux C, Mueller R, McBurney MW (2008) Sirt1-null mice develop an autoimmune-like condition. Exp Cell Res 314:3069–3074

    PubMed  CAS  Google Scholar 

  • Shin SM, Cho IJ, Kim SG (2009) Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol 76:884–895

    PubMed  CAS  Google Scholar 

  • Simão F, Matté A, Matté C, Soares FM, Wyse AT, Netto CA, Salbego CG (2011) Resveratrol prevents oxidative stress and inhibition of Na(+)K(+)-ATPase activity induced by transient global cerebral ischemia in rats. J Nutr Biochem 22(10):921–928

    PubMed  CAS  Google Scholar 

  • Simpkins JW, Yi KD, Yang SH, Dykens JA (2010) Mitochondrial mechanisms of estrogen neuroprotection. Biochim Biophys Acta 1800:1113–1120

    PubMed  CAS  Google Scholar 

  • Simpkins JW, Singh M, Brock C, Etgen AM (2012) Neuroprotection and estrogen receptors. Neuroendocrinology 96:119–130

    PubMed  CAS  Google Scholar 

  • Sivritas D, Becher MU, Ebrahimian T, Arfa O, Rapp S, Bohner A, Mueller CF, Umemura T, Wassmann S, Nickenig G, Wassmann K (2011) Antiproliferative effect of estrogen in vascular smooth muscle cells is mediated by Kruppel-like factor-4 and manganese superoxide dismutase. Basic Res Cardiol 106(4):563–575

    PubMed  CAS  Google Scholar 

  • Stirone C, Duckles SP, Krause DN, Procaccio V (2005) Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 68:959–965

    PubMed  CAS  Google Scholar 

  • Strehlow K, Rotter S, Wassmann S, Adam O, Grohé C, Laufs K, Böhm M, Nickenig G (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 93(2):170–177

    PubMed  CAS  Google Scholar 

  • Sugiyama N, Barros RP, Warner M, Gustafsson JA (2010) ERbeta: recent understanding of estrogen signaling. Trends Endocrinol Metab 21:545–552

    PubMed  CAS  Google Scholar 

  • Al Sweidi S, Sánchez MG, Bourque M, Morissette M, Dluzen D, Di Paolo T (2012) Oestrogen receptors and signalling pathways: implications for neuroprotective effects of sex steroids in Parkinson’s disease. J Neuroendocrinol 24:48–61

    PubMed  CAS  Google Scholar 

  • Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-­Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622

    PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    PubMed  CAS  Google Scholar 

  • Ungvari Z, Labinskyy N, Mukhopadhyay P, Pinto JT, Bagi Z, Ballabh P, Zhang C, Pacher P, Csiszar A (2009) Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol 297(5):H1876–H1881

    PubMed  CAS  Google Scholar 

  • Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    PubMed  CAS  Google Scholar 

  • Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J, Ferruzzi MG, Davies P, Marambaud P (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285:9100–9113

    PubMed  CAS  Google Scholar 

  • Wang L, Andersson S, Warner M, Gustafsson JA (2001) Morphological abnormalities in the brains of estrogen receptor beta knockout mice. Proc Natl Acad Sci USA 98:2792–2796

    PubMed  CAS  Google Scholar 

  • Wang M, Crisostomo PR, Markel T, Wang Y, Lillemoe KD, Meldrum DR (2008) Estrogen receptor beta mediates acute myocardial protection following ischemia. Surgery 144:233–238

    PubMed  Google Scholar 

  • Wang M, Wang Y, Weil B, Abarbanell A, Herrmann J, Tan J, Kelly M, Meldrum DR (2009) Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol 296(4):R972–R978

    PubMed  CAS  Google Scholar 

  • Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1106

    PubMed  CAS  Google Scholar 

  • Whyte L, Huang YY, Torres K, Mehta RG (2007) Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res 67:12007–12017

    PubMed  CAS  Google Scholar 

  • Wilson BJ, Tremblay AM, Deblois G, Sylvain-Drolet G, Giguère V (2010) An acetylation switch modulates the transcriptional activity of estrogen-related receptor alpha. Mol Endocrinol 24:1349–1358

    PubMed  CAS  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair DA (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    PubMed  CAS  Google Scholar 

  • Yao J, Hamilton RT, Cadenas E, Brinton RD (2010a) Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim Biophys Acta 1800:1121–1126

    PubMed  CAS  Google Scholar 

  • Yao J, Chen S, Cadenas E, Brinton RD (2010b) Estrogen protection against mitochondrial toxin-­induced cell death in hippocampal neurons: antagonism by progesterone. Brain Res 1379:2–10

    PubMed  Google Scholar 

  • Yao Y, Li H, Gu Y, Davidson NE, Zhou Q (2010c) Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis 31:382–387

    PubMed  CAS  Google Scholar 

  • Yao J, Irwin R, Chen S, Hamilton R, Cadenas E, Brinton RD (2012) Ovarian hormone loss induces bioenergetic deficits and mitochondrial β-amyloid. Neurobiol Aging 33(8):1507–1521

    PubMed  CAS  Google Scholar 

  • Yepuru M, Eswaraka J, Kearbey JD, Barrett CM, Raghow S, Veverka KA, Miller DD, Dalton JT, Narayanan R (2010) Estrogen receptor-{beta}-selective ligands alleviate high-fat diet- and ovariectomy-induced obesity in mice. J Biol Chem 285:31292–31303

    PubMed  CAS  Google Scholar 

  • Yoshino J, Conte C, Fontana L, Mittendorfer B, Imai S, Schechtman KB, Gu C, Kunz I, Rossi Fanelli F, Patterson BW, Klein S (2012) Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab 16:658–664

    PubMed  CAS  Google Scholar 

  • Yuan P, Liang K, Ma B, Zheng N, Nussinov R, Huang J (2011) Multiple-targeting and conformational selection in the estrogen receptor: computation and experiment. Chem Biol Drug Des 78(1):137–149

    PubMed  CAS  Google Scholar 

  • Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55:2180–2191

    PubMed  CAS  Google Scholar 

  • Zheng J, Ramirez VD (1999) Rapid inhibition of rat brain mitochondrial proton F0F1-ATPase activity by estrogens: comparison with Na+, K+-ATPase of porcine cortex. Eur J Pharmacol 368:95–102

    PubMed  CAS  Google Scholar 

  • Zheng J, Ramirez VD (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol 130:1115–1123

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Stuart, J.A., Robb, E.L. (2013). Cellular and Molecular Mechanisms of Resveratrol and Its Derivatives. In: Bioactive Polyphenols from Wine Grapes. SpringerBriefs in Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6968-1_3

Download citation

Publish with us

Policies and ethics