How to Face the Complexity of Plasmas?

Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 5)

Abstract

This paper has two main parts. The first part is subjective and aims at favoring a brainstorming in the plasma community. It discusses the present theoretical description of plasmas, with a focus on hot weakly collisional plasmas. It comprises two subparts. The first one deals with the present status of this description. In particular, most models used in plasma physics are shown to have feet of clay, there is no strict hierarchy between them, and a principle of simplicity dominates the modeling activity. At any moment the description of plasma complexity is provisional and results from a collective and somewhat unconscious process. The second subpart considers possible methodological improvements, some of them specific to plasma physics and some others of possible interest for other fields of science. The proposals for improving the present situation go along the following lines: improving the way papers are structured and the way scientific quality is assessed in the referral process, developing new databases, stimulating the scientific discussion of published results, diversifying the way results are made available, assessing more quality than quantity, and making available an incompressible time for creative thinking and non-purpose-oriented research. Some possible improvements for teaching are also indicated. The suggested improvement of the structure of papers would be for each paper to have a “claim section” summarizing the main results and their most relevant connection to previous literature. One of the ideas put forward is that modern nonlinear dynamics and chaos might help revisiting and unifying the overall presentation of plasma physics. The second part of this chapter is devoted to one instance where this idea has been developed for three decades: the description of Langmuir wave–electron interaction in one-dimensional plasmas by a finite-dimensional Hamiltonian. This part is more specialized and is written like a classical scientific paper. This Hamiltonian approach enables recovering Vlasovian linear theory with a mechanical understanding. The quasilinear description of the weak warm beam is discussed, and it is shown that self-consistency vanishes when the plateau forms in the tail distribution function. This leads to consider the various diffusive regimes of the dynamics of particles in a frozen spectrum of waves with random phases. A recent numerical simulation showed that diffusion is quasilinear when the plateau sets in and that the variation of the phase of a given wave with time is almost non-fluctuating for random realizations of the initial wave phases. This led to new analytical calculations of the average behavior of the self-consistent dynamics when the initial wave phases are random. Using Picard iteration technique, they confirm numerical results and exhibit a spontaneous emission of spatial inhomogeneities.

Keywords

Clay Vortex Depression Soliton Assure 

Notes

Acknowledgements

I am indebted to Y. Camenen, L. Couëdel, F. Doveil, and Y. Elskens, for a thorough reading of a first version of this paper and for providing me with an extensive feedback. My thanks also go to D. Bonfiglio, S. Cappello, and F. Sattin who did the same for a second version. Y. Elskens also helped me a lot in improving the English. F. Baldovin, M. Bécoulet, D. Bénisti, N. Bian, A. Boozer, P. Diamond, M.-C. Firpo, M. Henneaux, T. Mendonça, B. Momo, K. Razumova, S. Ruffo, M. Valisa, and F. Zolla are thanked for very useful comments and new references. I thank D. Guyomarc’h for drawing all the figures. My thanks go to M. Farge who pointed out to me reference [110]. The topic of my talk at Chaos, Complexity and Transport 2011 was about the description of self-consistent wave–particle interaction with a finite-dimensional Hamiltonian described in Sect. 4.3. However, two seminars I gave later on in the north and south campuses of Marseilles were the occasion to start developing the ideas of Sect. 4.2, in kind of an echo to Sect. 4.3. I thank the organizers of the conference for allowing me to extend the topic of my chapter beyond the original contents of my talk and to further develop my thoughts about plasma complexity and the way to tackle it.

References

  1. 1.
    M. Antoni, Y. Elskens, D.F. Escande, Phys. Plasmas 5, 841 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    N. Arcis, D.F. Escande, M. Ottaviani, Phys. Lett. A 347, 241 (2005)CrossRefGoogle Scholar
  3. 3.
    N. Arcis, D.F. Escande, M. Ottaviani, Phys. Plasmas 13, 052305 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S.D. Baalrud, J.D. Callen, C.C. Hegna, Phys. Plasmas 15, 092111 (2008)CrossRefGoogle Scholar
  5. 5.
    S.D. Baalrud, J.D. Callen, C.C. Hegna, Phys. Plasmas 17, 055704 (2010)CrossRefGoogle Scholar
  6. 6.
    D.R. Baker, N.R. Ahern, A.Y. Wong, Phys. Rev. Lett., 20, 318 (1968)CrossRefGoogle Scholar
  7. 7.
    R. Balecu, Statistical Dynamics Matter Out of Equilibrium (World scientific, Singapore, 1993)Google Scholar
  8. 8.
    J. Barré et al., Phys. Rev. E 69, 045501 (2004)CrossRefGoogle Scholar
  9. 9.
    J. Barré et al., J. Stat. Phys. 119, 677 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D. Bénisti, D.F. Escande, Phys. Plasmas 4, 1576 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Bénisti, L. Gremillet, Phys. Plasmas 14, 042304 (2007)CrossRefGoogle Scholar
  12. 12.
    D. Bénisti, D.J. Strozzi, L. Gremillet, Phys. Plasmas 15, 030701 (2008)CrossRefGoogle Scholar
  13. 13.
    D. Bénisti, O. Morice, L. Gremillet, D.J. Strozzi, Transport Theory Statist. Phys. 40, 185 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    I.B. Bernstein, J.M. Greene, M.D. Kruskal, Phys. Rev. 108, 546 (1957)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    N. Besse, Y. Elskens, D.F. Escande, P. Bertrand, Plasma Phys. Control. Fusion 53, 025012 (2011)CrossRefGoogle Scholar
  16. 16.
    N. Besse, Y. Elskens, D.F. Escande, P. Bertrand, in Proceedings of 38th EPS Conference on Controlled Fusion and Plasma Physics, Strasbourg, 2011, P2.009Google Scholar
  17. 17.
    D.D. Biskamp, Nonlinear Magnetohydrodynamics (Cambridge University Press, Cambridge, 1993)CrossRefGoogle Scholar
  18. 18.
    D. Bonfiglio, S. Cappello, D.F. Escande, Phys. Rev. Lett. 94, 145001 (2005)CrossRefGoogle Scholar
  19. 19.
    D. Bonfiglio, D.F. Escande, P. Zanca, S. Cappello, Nucl. Fusion 51, 063016 (2011)CrossRefGoogle Scholar
  20. 20.
    W.J. Bos, R. Rubinstein, L. Fang, http://hal.archives-ouvertes.fr/hal-00605446/en/
  21. 21.
    A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Cappello, D. Biskamp, Proceedings of International Conference on Plasma Physics, vol. 1, Nagoya, 1996, p. 854Google Scholar
  23. 23.
    S. Cappello, D.F. Escande, Phys. Rev. Lett. 85, 3838 (2000)CrossRefGoogle Scholar
  24. 24.
    S. Cappello, R. Paccagnella, in Proceedings of Workshop on Theory of Fusion Plasmas, ed. by E. Sindoni (Compositori, Bologna, 1990), p. 595Google Scholar
  25. 25.
    S. Cappello, R. Paccagnella, Phys. Fluids B4, 611 (1992)Google Scholar
  26. 26.
    S. Cappello et al., Nucl. Fusion 51, 103012 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Cappello et al., Theory of Fusion Plasmas. AIP Conference Proceedings, vol. 1069 (2008), p. 27CrossRefGoogle Scholar
  28. 28.
    J.R. Cary, R. Littlejohn, Ann. Phys. 151, 1 (1983)MathSciNetCrossRefGoogle Scholar
  29. 29.
    J.R. Cary, D.F. Escande, A.D. Verga, Phys. Rev. Lett. 65, 3132 (1990)CrossRefGoogle Scholar
  30. 30.
    B.V. Chirikov, Phys. Rep. 52, 263 (1979)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M.T. Cicero, De Natura Deorum (De Natura Deorum Academica with an English Translation by H. Rackham). (Harvard University press, Cambridge, 1967), p. 193, http://ia600302.us.archive.org/27/items/denaturadeorumac00ciceuoft/denaturadeorumac00ciceuoft.pdf
  32. 32.
    T. Dauxois, S. Ruffo, L.F. Cugliandolo (ed.), Long-Range Interacting Systems (Oxford University Press, Oxford, 2010)Google Scholar
  33. 33.
    L. de Broglie, Revolution in Physics (Routledge and Kegan Paul, London, 1954)MATHGoogle Scholar
  34. 34.
    D. del-Castillo-Negrete, in Turbulent Transport in Fusion Plasmas: Proceedings of the First ITER Summer School, ed. by S. Benkadda. AIP Conference Proceedings, vol. 1013 (American Institute of Physics, Meville, 2008), p. 207Google Scholar
  35. 35.
    D. del-Castillo-Negrete, Nonlinear process. Geophys. 17, 795 (2010)Google Scholar
  36. 36.
    F. Doveil, Y. Vosluisant, S.I. Tsunoda, Phys. Rev. Lett. 69, 2074 (1992)CrossRefGoogle Scholar
  37. 37.
    F. Doveil, D.F. Escande, A. Macor, Phys. Rev. Lett. 94, 085003 (2005)CrossRefGoogle Scholar
  38. 38.
    F. Doveil et al., Phys. Plasmas 12, 010702 (2005)CrossRefGoogle Scholar
  39. 39.
    W.E. Drummond, D. Pines, Nucl. Fusion Suppl. 3, 1049 (1962)Google Scholar
  40. 40.
    K. Elsässer, Plasma Phys. Control. Fusion 28, 1743 (1986)CrossRefGoogle Scholar
  41. 41.
    Y. Elskens, ESAIM Proc., ed. by F. Coquel, S. Cordier, 10, 211 (2001), http://www.emath.fr/Maths/Proc
  42. 42.
    Y. Elskens, Commun. Nonlinear Sci. Numer. Simul. 15, 10 (2010)CrossRefGoogle Scholar
  43. 43.
    Y. Elskens, J. Stat. Phys. 148, 591 (2012)Google Scholar
  44. 44.
    Y. Elskens, D.F. Escande, Nonlinearity 4, 615 (1991)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Y. Elskens, D.F. Escande, Physica D 62, 66 (1993)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Y. Elskens, D.F. Escande, Microscopic Dynamics of Plasmas and Chaos (IoP, Bristol, 2003)CrossRefMATHGoogle Scholar
  47. 47.
    Y. Elskens, E. Pardoux, Ann. Appl. Prob. 20, 2022 (2010)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    D.F. Escande, Phys. Rev. Lett. 35, 995 (1975)CrossRefGoogle Scholar
  49. 49.
    D.F. Escande, J.P.M. Schmitt, Phys. Fluids 19, 1757 (1976).CrossRefGoogle Scholar
  50. 50.
    D.F. Escande, Phys. Rep. 121, 165 (1985)MathSciNetCrossRefGoogle Scholar
  51. 51.
    D.F. Escande, in Large Scale Structures in Nonlinear Physics, ed. by J.D. Fournier P.L. Sulem. Lecture Notes in Physics, vol. 392 (Springer, New york, 1991), p. 73Google Scholar
  52. 52.
    D.F. Escande, in Long-Range Interacting Systems, ed. by T. Dauxois, S. Ruffo, L.F. Cugliandolo (Oxford University Press, Oxford, 2010), p. 469Google Scholar
  53. 53.
    D.F. Escande, Proceedings of International Symposium on Waves, Coherent, Structures and Turbulence in Plasmas. AIP Conference Proceedings, vol. 1308, 2010, p. 85Google Scholar
  54. 54.
    D.F. Escande, F. Doveil, J. Stat. Phys. 26, 257 (1981)MathSciNetCrossRefGoogle Scholar
  55. 55.
    D.F. Escande, Y. Elskens, Phys. Lett. A 302, 110 (2002)CrossRefGoogle Scholar
  56. 56.
    D.F. Escande, M. Ottaviani, Phys. Lett. A 323, 278 (2004)CrossRefMATHGoogle Scholar
  57. 57.
    D.F. Escande, F. Sattin, Phys. Rev. Lett. 99, 185005 (2007)CrossRefGoogle Scholar
  58. 58.
    D.F. Escande, F. Sattin, Phys. Rev. Lett. 108, 125007 (2012)CrossRefGoogle Scholar
  59. 59.
    D.F. Escande, B. Souillard, Phys. Rev. Lett. 52, 1296 (1984)MathSciNetCrossRefGoogle Scholar
  60. 60.
    D.F. Escande, H. Kantz, R. Livi, S. Ruffo, J. Stat. Phys. 76, 605 (1994)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    D.F. Escande, S. Zekri, Y. Elskens, Phys. Plasmas 3, 3534 (1996)CrossRefGoogle Scholar
  62. 62.
    D.F. Escande, P. Martin, S. Ortolani et al., Phys. Rev. Lett. 85, 1662 (2000)CrossRefGoogle Scholar
  63. 63.
    D.F. Escande, R. Paccagnella et al., Phys. Rev. Lett. 85, 3169 (2000)CrossRefGoogle Scholar
  64. 64.
    W. Ettoumi, M.-C. Firpo, Phys. Rev. E 84, 030103 (2011)CrossRefGoogle Scholar
  65. 65.
    J.M. Finn, R.A. Nebel, C.C. Bathke, Phys. Fluids B4, 1262 (1992)Google Scholar
  66. 66.
    M.-C. Firpo, Y. Elskens, Phys. Rev. Lett. 84, 3318 (2000)CrossRefGoogle Scholar
  67. 67.
    M.-C. Firpo et al., Phys. Rev. E 64, 026407 (2001)CrossRefGoogle Scholar
  68. 68.
    M.-C. Firpo, F. Leyvraz, G. Attuel, Phys. Plasmas 13, 122302 (2006)CrossRefGoogle Scholar
  69. 69.
    J.P. Freidberg, Ideal Magneto-Hydro-Dynamics (Plenum Press, New York, 1987)CrossRefGoogle Scholar
  70. 70.
    B. Gallet et al., Phys. Rev. Lett. 108, 144501 (2012)CrossRefGoogle Scholar
  71. 71.
    S. Gasiorowicz, M. Neuman, R.J. Riddell, Phys. Rev. 101, 922 (1956)CrossRefMATHGoogle Scholar
  72. 72.
    M. Gobbin et al., Phys. Rev. Lett. 106, 025001 (2011)CrossRefGoogle Scholar
  73. 73.
    M. Greenwald, Plasma Phys. Control Fusion 44, R27 (2002)CrossRefGoogle Scholar
  74. 74.
    R.J. Hastie, F. Militello, F. Porcelli, Phys. Rev. Lett. 95, 065001 (2005)CrossRefGoogle Scholar
  75. 75.
    R.D. Hazeltine, J.D. Meiss, Plasma Confinement (Dover Press, Mineola, 2003)Google Scholar
  76. 76.
    R.D. Hazeltine, F.L. Waelbroeck, The Framework of Plasma Physics (Westview Press, Boulder, 2004)Google Scholar
  77. 77.
    T.C. Hender et al., Nucl. Fusion 47, S128 (2007)CrossRefGoogle Scholar
  78. 78.
    W. Horton, Rev. Mod. Phys. 71, 735 (1999)CrossRefGoogle Scholar
  79. 79.
    K. Ikeda et al., Nucl. Fusion 47, S1 (2007)CrossRefGoogle Scholar
  80. 80.
    B.B. Kadomtsev, Tokamak Plasma: A Complex Physical System (IOP, Bristol, 1992), p. 3Google Scholar
  81. 81.
    N.G. van Kampen, Physica 21, 949 (1955)MathSciNetCrossRefGoogle Scholar
  82. 82.
    M.K.H. Kiessling, T. Neukirch, Proc. Natl. Acad. Sci. 100, 1510 (2003)MathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    C. Krafft, A. Volokitin, A. Zaslavsky, Phys. Rev. E 82, 066402 (2010)MathSciNetCrossRefGoogle Scholar
  84. 84.
    R. Kraichnan, R. Panda, Phys. Fluids 31, 2395 (1988)CrossRefMATHGoogle Scholar
  85. 85.
    T.S. Kuhn, The Structure of Scientific Revolutions, 1st edn, 1962. (University of Chicago Press, Chicago, 1996)Google Scholar
  86. 86.
    L.D. Landau, Zh. Eksp. Teor. Fiz. 16 574 (1946); translation J. Phys. USSR 10, 25 (1946); reprinted in Collected Papers of Landau, ed. by D. ter Haar (Pergamon, Oxford, 1965)Google Scholar
  87. 87.
    G. Laval, D. Pesme, Phys. Rev. Lett. 53, 270 (1984)CrossRefGoogle Scholar
  88. 88.
    Y.-M. Liang, P.H. Diamond, Comments Plasma Phys. Control. Fusion 15, 139 (1993)Google Scholar
  89. 89.
    Y.-M. Liang, P.H. Diamond, Phys. Fluids B5, 4333 (1993)Google Scholar
  90. 90.
    R. Lorenzini et al., Nature Phys. 5, 570 (2009)CrossRefGoogle Scholar
  91. 91.
    J.H. Malmberg, C.B. Wharton, Phys. Rev. Lett. 13 184 (1964)CrossRefGoogle Scholar
  92. 92.
    F. Militello, F. Porcelli, Phys. Plasmas 11, L13 (2004)CrossRefGoogle Scholar
  93. 93.
    F. Militello, R.J. Hastie, F. Porcelli, Phys. Plasmas 13, 112512 (2006)CrossRefGoogle Scholar
  94. 94.
    R. Monchaux et al., Phys. Fluids 21, 035108 (2009)CrossRefGoogle Scholar
  95. 95.
    C. Mouhot, C. Villani, J. Math. Phys. 51, 015204 (2010)MathSciNetCrossRefGoogle Scholar
  96. 96.
    I.N. Onishchenko et al., ZhETF Pis. Red. 12, 407 (1970); translation JETP Lett. 12, 281 (1970)Google Scholar
  97. 97.
    T.M. O’Neil, Phys. Fluids 8, 2255 (1965)MathSciNetCrossRefGoogle Scholar
  98. 98.
    T.M. O’Neil, J.H. Winfrey, J.H. Malmberg, Phys. Fluids 4, 1204 (1971)CrossRefGoogle Scholar
  99. 99.
    S. Ortolani, D.D. Schnack, Magnetohydrodynamics of Plasma Relaxation (World Scientific, Singapore, 1993)CrossRefGoogle Scholar
  100. 100.
    A.G. Peeters et al., Nucl. Fusion 51, 094027 (2011)CrossRefGoogle Scholar
  101. 101.
    F.W. Perkins et al., Nucl. Fusion 39, 2137 (1999)CrossRefGoogle Scholar
  102. 102.
    E. Piña, T. Ortiz, J. Phys. A: Math. Gen. 21, 1293 (1988)CrossRefGoogle Scholar
  103. 103.
    K.R. Popper, The Logic of Scientific Discovery (Routledge, London, 2002)MATHGoogle Scholar
  104. 104.
    M.E. Puiatti et al., Phys. Plasmas 16, 012505 (2009)CrossRefGoogle Scholar
  105. 105.
    M.E. Puiatti et al., Nucl. Fusion 49, 045012 (2009)CrossRefGoogle Scholar
  106. 106.
    C. Roberson, K.W. Gentle, Phys. Fluids 14, 2462 (1971)CrossRefGoogle Scholar
  107. 107.
    Yu.A. Romanov, G.F. Filippov, Zh. Eksp. Theor. Phys. 40, 123 (1961); translation Soviet Phys. JETP 13, 87 (1961)Google Scholar
  108. 108.
    M.N. Rosenbluth, W.M. MacDonald, D.L. Judd, Phys. Rev. 107, 1 (1957)MathSciNetCrossRefMATHGoogle Scholar
  109. 109.
    M.G. Rusbridge, Plasma Phys. Control Fusion 33, 1381 (1991)CrossRefGoogle Scholar
  110. 110.
    B. Russell, The Scientific Outlook, part I, chapter II. (George Allen and Unwin, London, 1931)Google Scholar
  111. 111.
    F. Ryter, R. Dux, P. Mantica, T. Tala, Plasma Phys. Control Fusion 52, 124043 (2010)CrossRefGoogle Scholar
  112. 112.
    P.B. Snyder et al., Nucl. Fusion 47, 961 (2007)CrossRefGoogle Scholar
  113. 113.
    H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Berlin, 1991)CrossRefMATHGoogle Scholar
  114. 114.
    J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)CrossRefGoogle Scholar
  115. 115.
    J.L. Tennyson, J.D. Meiss, P.J. Morrison, Physica D 71, 1 (1994)MathSciNetCrossRefMATHGoogle Scholar
  116. 116.
    P.W. Terry et al., Phys. Plasmas 15, 062503 (2008)CrossRefGoogle Scholar
  117. 117.
    S.I. Tsunoda, F. Doveil, J.H. Malmberg, Phys. Fluids B3, 2747 (1991)Google Scholar
  118. 118.
    A.A. Vedenov, E.P. Velikhov, R.Z. Sagdeev, Nucl. Fusion Suppl. 2, 465 (1962)Google Scholar
  119. 119.
    J.A. Wesson, Tokamaks (Oxford University press, Oxford, 2004)MATHGoogle Scholar
  120. 120.
    P.H. Yoon, T. Rhee, C.-M. Ryu, Phys. Rev. Lett. 95, 215003 (2005)CrossRefGoogle Scholar
  121. 121.
    L.F. Ziebell, P.H. Yoon, J. Pavan, R. Gaelzer, Astrophys. J. 727, 16 (2011)CrossRefGoogle Scholar
  122. 122.
  123. 123.
  124. 124.
  125. 125.
  126. 126.
  127. 127.
  128. 128.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.UMR 7345 CNRS-Aix-Marseille-UniversitéMarseille CEDEX 20France

Personalised recommendations