Skip to main content

An Ising Model for Road Traffic Inference

  • Chapter
  • First Online:
Book cover From Hamiltonian Chaos to Complex Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 5))

  • 1392 Accesses

Abstract

We review some properties of the “belief propagation” algorithm, a distributed iterative map used to perform Bayesian inference and present some recent work where this algorithm serves as a starting point to encode observation data into a probabilistic model and to process large-scale information in real time. A natural approach is based on the linear response theory and various recent instantiations are presented. We will focus on the particular situation where the data have many different statistical components, representing a variety of independent patterns. As an application, the problem of reconstructing and predicting traffic states based on floating car data is then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Potentially any arbitrary mapping ϕ(x) could be considered to perform the moment matching.

References

  1. D.J. Amit, H. Gutfreund, H. Sompolinsky, Statistical mechanics of neural networks near saturation. Ann. Phys. 173(1), 30–67 (1987)

    Article  Google Scholar 

  2. H. Chau Nguyen, J. Berg, Bethe-peierls approximation and the inverse ising model. ArXiv e-prints, 1112.3501 (2011)

    Google Scholar 

  3. S.Cocco, R. Monasson, Adaptive cluster expansion for the inverse Ising problem: convergence, algorithm and tests. arXiv:1110.5416, 2011

    Google Scholar 

  4. S. Cocco, R. Monasson, V. Sessak, High-dimensional inference with the generalized hopfield model: Principal component analysis and corrections. Phys. Rev. E 83, 051123 (2011)

    Article  Google Scholar 

  5. A. de Palma, F. Marchal, Real cases applications of the fully dynamic METROPOLIS tool-box: an advocacy for large-scale mesoscopic transportation systems. Networks Spatial Econ. 2(4), 347–369 (2002)

    Article  Google Scholar 

  6. B. Frey, D. Dueck, Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Furtlehner, Y. Han, J.-M. Lasgouttes, V. Martin, F. Marchal, F. Moutarde, Spatial and temporal analysis of traffic states on large scale networks. In Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, pp. 1215 –1220, 2010

    Google Scholar 

  8. C. Furtlehner, J.-M. Lasgouttes, A. Auger, Learning multiple belief propagation fixed points for real time inference. Physica A: Stat. Mech. Appl. 389(1), 149–163 (2010)

    Article  MathSciNet  Google Scholar 

  9. C. Furtlehner, J.-M. Lasgouttes, A. de La Fortelle, A belief propagation approach to traffic prediction using probe vehicles. In Proceedings IEEE 10th Intelligent Conference Intelligent Transport System, pp. 1022–1027, 2007

    Google Scholar 

  10. A. Georges, J. Yedidia, How to expand around mean-field theory using high-temperature expansions. J. Phys. A: Math. Gen. 24(9), 2173 (1991).

    Google Scholar 

  11. Y. Han, F. Moutarde, Analysis of Network-level Traffic States using Locality Preservative Non-negative Matrix Factorization. In Proceedings of ITSC, 2011

    Google Scholar 

  12. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  13. T. Heskes, On the uniqueness of loopy belief propagation fixed points. Neural Comput. 16, 2379–2413 (2004)

    Article  MATH  Google Scholar 

  14. J.J. Hopfield, Neural network and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  15. E.T. Jaynes, Probability Theory: The Logic of Science (Vol 1) (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  16. Y. Kabashima, D. Saad, Belief propagation vs. tap for decoding corrupted messages. Europhys. Lett. 44, 668 (1998)

    Google Scholar 

  17. H. Kappen, F. Rodrguez, Efficient learning in boltzmann machines using linear response theory. Neural Comput. 10(5), 1137–1156 (1998)

    Article  Google Scholar 

  18. F.R. Kschischang, B.J. Frey, H.A. Loeliger, Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Th. 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Martin, Modélisation probabiliste et inférence par l’algorithme Belief Propagation, Thèse de doctorat, Ecole des Mines de Paris, 2013

    Google Scholar 

  20. M. Mezard, T. Mora, Constraint satisfaction problems and neural networks: A statistical physics perspective. J. Physiology-Paris 103(1–2), 107–113 (2009)

    Article  Google Scholar 

  21. M. Mézard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)

    MATH  Google Scholar 

  22. M. Mézard, R. Zecchina, The random K-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E 66, 56126 (2002)

    Article  Google Scholar 

  23. T. Minka, Expectation propagation for approximate bayesian inference. In Proceedings UAI, pp. 362–369, 2001

    Google Scholar 

  24. J.M. Mooij, H.J. Kappen, On the properties of the Bethe approximation and loopy belief propagation on binary network. J. Stat. Mech. P11012 (2005)

    Google Scholar 

  25. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference (Morgan Kaufmann, San Mateo, 1988)

    Google Scholar 

  26. T. Plefka, Convergence condition of the tap equation for the infinite-ranged ising spin glass model. J. Phys. A: Math. Gen. 15(6), (1971, 1982),

    Google Scholar 

  27. PUMAS project, (2010–2013). http://pumas.inria.fr/public/document

  28. TRAVESTI project, (2009–2012). http://travesti.gforge.inria.fr/

  29. M.J. Wainwright, Stochastic processes on graphs with cycles: geometric and variational approaches. PhD thesis, MIT, 2002

    Google Scholar 

  30. Y. Watanabe, K. Fukumizu, Graph zeta function in the bethe free energy and loopy belief propagation. In Advances in Neural Information Processing Systems, vol. 22, pp. 2017–202, 2009

    Google Scholar 

  31. Y. Weiss, W.T. Freeman, Correctness of belief propagation in gaussian graphical models of arbitrary topology. Neural Comput. 13(10), 2173–2200 (2001)

    Article  MATH  Google Scholar 

  32. M. Welling, Y.W. Teh, Approximate inference in boltzmann machines. Artif. Intell. 143(1), 19–50 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Yasuda, K. Tanaka, Approximate learning algorithm in boltzmann machines. Neural Comput. 21, 3130–3178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. J.S. Yedidia, W.T. Freeman, Y. Weiss, Generalized belief propagation. Adv. Neural Inform. Process. Syst. 13, 689–695 (2001)

    Google Scholar 

Download references

Acknowledgment

This gives me the occasion to express my warm thanks to my colleagues Victorin Martin and Jean-Marc Lasgouttes with whom it is a pleasure to collaborate on the main subjects discussed in this review. I am also grateful to Anne Auger, Yufei Han, Fabrice Marchal and Fabien Moutarde, for many aspects mentioned in this work concerning ongoing projects. This work was supported by the grant ANR-08-SYSC-017 from the French National Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Furtlehner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Furtlehner, C. (2013). An Ising Model for Road Traffic Inference. In: Leoncini, X., Leonetti, M. (eds) From Hamiltonian Chaos to Complex Systems. Nonlinear Systems and Complexity, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6962-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6962-9_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6961-2

  • Online ISBN: 978-1-4614-6962-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics