Skip to main content

Weak Chaos, Infinite Ergodic Theory, and Anomalous Dynamics

  • Chapter
  • First Online:
From Hamiltonian Chaos to Complex Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 5))

Abstract

This book chapter introduces to the concept of weak chaos, aspects of its ergodic theory description, and properties of the anomalous dynamics associated with it. In the first half of the chapter we study simple one-dimensional deterministic maps, in the second half basic stochastic models, and eventually an experiment. We start by reminding the reader of fundamental chaos quantities and their relation to each other, exemplified by the paradigmatic Bernoulli shift. Using the intermittent Pomeau–Manneville map the problem of weak chaos and infinite ergodic theory is outlined, defining a very recent mathematical field of research. Considering a spatially extended version of the Pomeau–Manneville map leads us to the phenomenon of anomalous diffusion. This problem will be discussed by applying stochastic continuous time random walk theory and by deriving a fractional diffusion equation. Another important topic within modern nonequilibrium statistical physics are fluctuation relations, which we investigate for anomalous dynamics. The chapter concludes by showing the importance of anomalous dynamics for understanding experimental results on biological cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This condition could be eliminated by defining a metric on a circle [4].

  2. 2.

    We remark that in [59–61] one finds several slightly different definitions of pseudochaos. Here we refer to the first one stated in [59].

  3. 3.

    This should not be confused with topological chaos as defined in [7].

  4. 4.

    In detail, the definition of a generalized diffusion coefficient is a bit more subtle [26].

References

  1. H. Schuster, Deterministic Chaos, 2nd edn. (VCH Verlagsgesellschaft mbH, Weinheim, 1989)

    MATH  Google Scholar 

  2. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  3. C. Beck, F. Schlögl, Thermodynamics of Chaotic Systems. Cambridge Nonlinear Science Series, vol. 4 (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  4. K. Alligood, T. Sauer, J. Yorke, Chaos - An Introduction to Dynamical Systems (Springer, New York, 1997)

    Google Scholar 

  5. R. Klages, W. Just, C. Jarzynski (eds.), Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond. Reviews of Nonlinear Dynamics and Complexity (Wiley-VCH, Berlin, 2013)

    Google Scholar 

  6. J. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press, Cambridge, 1999)

    Book  MATH  Google Scholar 

  7. P. Gaspard, Chaos, Scattering, and Statistical Mechanics (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  8. R. Klages, Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics. Advanced Series in Nonlinear Dynamics, vol. 24 (World Scientific, Singapore, 2007)

    Google Scholar 

  9. C. Castiglione, M. Falcioni, A. Lesne, A. Vulpiani, Chaos and Coarse Graining in Statistical Mechanics (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  10. D. Evans, D. Searles, Adv. Phys. 51, 1529 (2002)

    Article  Google Scholar 

  11. C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 43 (2005)

    Article  Google Scholar 

  12. J. Aaronson, An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs, vol. 50 (American Mathematical Society, Providence, 1997)

    Google Scholar 

  13. G. Zaslavsky, D. Usikov, Weak Chaos and Quasi-Regular Patterns. Cambridge Nonlinear Science Series (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  14. R. Klages, G. Radons, I. Sokolov (eds.), Anomalous Transport: Foundations and Applications (Wiley-VCH, Berlin, 2008)

    Google Scholar 

  15. M. Shlesinger, G. Zaslavsky, J. Klafter, Nature 363, 31 (1993)

    Article  Google Scholar 

  16. J. Klafter, M.F. Shlesinger, G. Zumofen, Phys. Today 49, 33 (1996)

    Article  Google Scholar 

  17. F. Stefani, J. Hoogenboom, E. Barkai, Phys. Today 62, 34 (2009)

    Article  Google Scholar 

  18. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Metzler, J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Aaronson, in Descriptive Set Theory and Dynamical Systems, ed. by M. Foreman et al. London Mathematical Society lecture notes, vol. 277 (Cambridge University Press, Cambridge, 2000), pp. 1–29

    Google Scholar 

  21. M. Thaler, R. Zweimüller, Probab. Theory Relat. Fields 155, 15 (2006)

    Article  Google Scholar 

  22. R. Klages, R. Zweimüller, E. Barkai, H. Kantz, Weak chaos, infinite ergodic theory, and anomalous dynamics (2011), http://www.pks.mpg.de/~wchaos11

  23. R. Klages, in Reviews of Nonlinear Dynamics and Complexity, vol. 3 (Wiley-VCH, Berlin, 2010), pp. 169–227

    Google Scholar 

  24. P. Howard, R. Klages, Entropy and stretching rates in intermittent maps (2009). Unpublished

    Google Scholar 

  25. N. Korabel, A. Chechkin, R. Klages, I. Sokolov, V. Gonchar, Europhys. Lett. 70, 63 (2005)

    Article  MathSciNet  Google Scholar 

  26. N. Korabel, R. Klages, A. Chechkin, I. Sokolov, V. Gonchar, Phys. Rev. E 75, 036213/1 (2007)

    Google Scholar 

  27. R. Klages, A. Chechkin, P. Dieterich, in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond. Reviews of Nonlinear Dynamics and Complexity (Wiley-VCH, Berlin, 2013), pp. 259–282

    Google Scholar 

  28. A. Chechkin, R. Klages, J. Stat. Mech.: Theor. Exp. 03, L03002/1 (2009)

    Google Scholar 

  29. P. Dieterich, R. Klages, R. Preuss, A. Schwab, Proc. Natl. Acad. Sci. 105, 459 (2008)

    Article  Google Scholar 

  30. C. Robinson, Dynamical Systems (CRC Press, London, 1995)

    MATH  Google Scholar 

  31. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol. 54 (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  32. V. Arnold, A. Avez, Ergodic Problems of Classical Mechanics (W.A. Benjamin, New York, 1968)

    Google Scholar 

  33. M. Toda, R. Kubo, N. Saitô, Statistical Physics, 2nd edn. Solid State Sciences, vol. 1 (Springer, Berlin, 1992)

    Google Scholar 

  34. L.S. Young, J. Stat. Phys. 108, 733 (2002)

    Article  MATH  Google Scholar 

  35. J.P. Eckmann, D. Ruelle, Rev. Mod. Phys. 57, 617 (1985)

    Article  MathSciNet  Google Scholar 

  36. V. Baladi, Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, vol. 16 (World Scientific, Singapore, 2000)

    Google Scholar 

  37. R. Badii, A. Politi, Complexity: Hierarchical Structures and Scaling Physics (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  38. Y. Pomeau, P. Manneville, Commun. Math. Phys. 74, 189 (1980)

    Article  MathSciNet  Google Scholar 

  39. R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd edn. (Addison-Wesley, Reading, 1989)

    MATH  Google Scholar 

  40. M. Thaler, Israel J. Math. 46, 67 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Zweimüller, Nonlinearity 11, 1263 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. N. Korabel, E. Barkai, Phys. Rev. Lett. 102, 050601/1 (2009)

    Google Scholar 

  43. N. Korabel, E. Barkai, Phys. Rev. E 82, 016209/1 (2010)

    Google Scholar 

  44. M. Thaler, Infinite ergodic theory. Course notes from “The Dynamic Odyssey”, CIRM 2001 (2001), http://www.sbg.ac.at/mat/staff/thaler/thaler_english.htm

  45. R. Zweimüller, Surrey notes on infinite ergodic theory. Course notes from the “LMS Graduate school on Ergodic Theory”, Surrey (2009), http://homepage.univie.ac.at/roland.zweimueller/MyPub/SurreyNotes.pdf

  46. P. Gaspard, X.J. Wang, Proc. Nat. Acad. Sci. USA 85, 4591 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Galatolo, Nonlinearity 16, 1219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. H. van Beijeren, Physica D 193, 90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Artuso, G. Cristadoro, Chaos 15, 015116/1 (2005)

    Google Scholar 

  50. A. Rebenshtok, E. Barkai, J. Stat. Phys. 133, 565 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. R. Zweimüller, Ergod. Theor. Dyn. Syst. 20, 1519 (2000)

    Article  MATH  Google Scholar 

  52. D. Ruelle, Thermodynamic Formalism. Encyclopedia of Mathematics and its Applications, vol. 5 (Addison-Wesley, Reading, 1978)

    Google Scholar 

  53. T. Prellberg, J. Slawny, J. Stat. Phys. 66, 503 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Tasaki, P. Gaspard, J. Stat. Phys. 109, 803 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Tasaki, P. Gaspard, Physica D 187, 51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. T. Akimotoa, Y. Aizawa, Chaos 20, 033110/1 (2010)

    Google Scholar 

  57. A. Saa, R. Venegeroles, J. Stat. Mech: Theor. Exp. 03, P03010/1 (2012)

    Google Scholar 

  58. G. Keller, Equilibrium States in Ergodic Theory. London Mathematical Society Student Texts, vol. 42 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  59. G. Zaslavsky, Phys. Rep. 371, 461 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Zaslavsky, M. Edelman, in Perspective and Problems in Nonlinear Science, ed. by E. Kaplan, J. Marsden (Springer, New York, 2003), pp. 421–443

    Google Scholar 

  61. G. Zaslavsky, B. Carreras, V. Lynch, L. Garcia, M. Edelman, Phys. Rev. E 72, 026227/1 (2005)

    Google Scholar 

  62. R. Artuso, G. Casati, I. Guarneri, Phys. Rev. E 55, 6384 (1997)

    Article  MathSciNet  Google Scholar 

  63. B. Li, L. Wang, B. Hu, Phys. Rev. Lett. 88, 223901/1 (2002)

    Google Scholar 

  64. H. Fujisaka, S. Grossmann, Z. Physik B 48, 261 (1982)

    Article  MathSciNet  Google Scholar 

  65. T. Geisel, J. Nierwetberg, Phys. Rev. Lett. 48, 7 (1982)

    Article  MathSciNet  Google Scholar 

  66. M. Schell, S. Fraser, R. Kapral, Phys. Rev. A 26, 504 (1982)

    Article  MathSciNet  Google Scholar 

  67. T. Geisel, S. Thomae, Phys. Rev. Lett. 52, 1936 (1984)

    Article  MathSciNet  Google Scholar 

  68. G. Zumofen, J. Klafter, Phys. Rev. E 47, 851 (1993)

    Article  Google Scholar 

  69. E. Montroll, G. Weiss, J. Math. Phys. 6, 167 (1965)

    Article  MathSciNet  Google Scholar 

  70. E. Montroll, H. Scher, J. Stat. Phys. 9, 101 (1973)

    Article  Google Scholar 

  71. H. Scher, E. Montroll, Phys. Rev. B 12, 2455 (1975)

    Article  Google Scholar 

  72. J. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  Google Scholar 

  73. G. Weiss, Aspects and Applications of the Random Walk (North-Holland, Amsterdam, 1994)

    MATH  Google Scholar 

  74. W. Ebeling, I. Sokolov, Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems (World Scientific, Singapore, 2005)

    Book  MATH  Google Scholar 

  75. T. Geisel, J. Nierwetberg, A. Zacherl, Phys. Rev. Lett. 54, 616 (1985)

    Article  Google Scholar 

  76. M. Shlesinger, J. Klafter, Phys. Rev. Lett. 54, 2551 (1985)

    Article  Google Scholar 

  77. R. Klages, Deterministic Diffusion in One-dimensional Chaotic Dynamical Systems (Wissenschaft & Technik-Verlag, Berlin, 1996)

    Google Scholar 

  78. R. Klages, J. Dorfman, Phys. Rev. E 55(2), R1247 (1997)

    Article  Google Scholar 

  79. R. Klages, J. Dorfman, Phys. Rev. Lett. 74, 387 (1995)

    Article  Google Scholar 

  80. R. Klages, J. Dorfman, Phys. Rev. E 59, 5361 (1999)

    Article  MathSciNet  Google Scholar 

  81. X. Wang, Phys. Rev. A 39, 3214 (1989)

    Article  Google Scholar 

  82. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  83. F. Mainardi, in Fractals and Fractional Calculus in Continuum Mechanics, ed. by A. Carpinteri, F. Mainardi. CISM Courses and Lecture Notes, vol. 378 (Springer, Berlin, 1997), pp. 291–348

    Google Scholar 

  84. I. Sokolov, J. Klafter, A. Blumen, Phys. Today 55, 48 (2002)

    Article  Google Scholar 

  85. G. Bochkov, Y. Kuzovlev, Physica A 106, 443 (1981)

    Article  MathSciNet  Google Scholar 

  86. G. Bochkov, Y. Kuzovlev, Physica A 106, 480 (1981)

    Article  MathSciNet  Google Scholar 

  87. D. Evans, E. Cohen, G. Morriss, Phys. Rev. Lett. 71, 2401 (1993)

    Article  MATH  Google Scholar 

  88. D. Evans, D. Searles, Phys. Rev. E 50, 1645 (1994)

    Article  Google Scholar 

  89. G. Gallavotti, E. Cohen, Phys. Rev. Lett. 74, 2694 (1995)

    Article  Google Scholar 

  90. G. Gallavotti, E. Cohen, J. Stat. Phys. 80, 931 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  91. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  Google Scholar 

  92. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  Google Scholar 

  93. G. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  Google Scholar 

  94. T. Hatano, S. Sasa, Phys. Rev. Lett. 86, 3463 (2001)

    Article  Google Scholar 

  95. U. Seifert, Phys. Rev. Lett. 95, 040602/1 (2005)

    Google Scholar 

  96. T. Sagawa, M. Ueda, Phys. Rev. Lett. 104, 090602/1 (2010)

    Google Scholar 

  97. G. Gallavotti, Chaos 8, 384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  98. R. Harris, G. Schütz, J. Stat. Mech. 7, P07020/1 (2007)

    Google Scholar 

  99. U. Seifert, Eur. Phys. J. B 64, 423 (2008)

    Article  MATH  Google Scholar 

  100. C. Jarzynski, Eur. Phys. J. B 64, 331 (2008)

    Article  MathSciNet  Google Scholar 

  101. G. Wang, E. Sevick, E. Mittag, D. Searles, D. Evans, Phys. Rev. Lett. 89, 050601/1 (2002)

    Google Scholar 

  102. F. Ritort, Poincaré Seminar 2, 195 (2003)

    Google Scholar 

  103. S. Ciliberto, S. Joubaud, A. Petrosyan, J. Stat. Mech. 2010(12), P12003/1 (2010)

    Google Scholar 

  104. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010)

    Article  Google Scholar 

  105. A. Alemany, M. Ribezzi, F. Ritort, AIP Conf. Proc. 1332(1), 96 (2011)

    Article  Google Scholar 

  106. C. Beck, E. Cohen, Physica A 344, 393 (2004)

    Article  MathSciNet  Google Scholar 

  107. T. Ohkuma, T. Ohta, J. Stat. Mech. 10, P10010/1 (2007)

    Google Scholar 

  108. T. Mai, A. Dhar, Phys. Rev. E 75, 061101/1 (2007)

    Google Scholar 

  109. S. Chaudhury, D. Chatterjee, B. Cherayil, J. Stat. Mech.: Theor. Exp. 10, P10006/1 (2008)

    Google Scholar 

  110. H. Touchette, E. Cohen, Phys. Rev. E 76, 020101(R)/1 (2007)

    Google Scholar 

  111. H. Touchette, E. Cohen, Phys. Rev. E 80, 011114/1 (2009)

    Google Scholar 

  112. M. Esposito, K. Lindenberg, Phys. Rev. E 77, 051119/1 (2008)

    Google Scholar 

  113. M. Sellitto, Phys. Rev. E 80, 011134/1 (2009)

    Google Scholar 

  114. J. Kurchan, J. Stat. Mech.: Theor. Exp. 2007(07), P07005/1 (2007)

    Google Scholar 

  115. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics, 2nd edn. Solid State Sciences, vol. 2 (Springer, Berlin, 1992)

    Google Scholar 

  116. R. van Zon, E. Cohen, Phys. Rev. E 67, 046102/1 (2003)

    Google Scholar 

  117. R. van Zon, E. Cohen, Phys. Rev. Lett. 91, 110601/1 (2003)

    Google Scholar 

  118. H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1996)

    MATH  Google Scholar 

  119. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  Google Scholar 

  120. F. Zamponi, F. Bonetto, L. Cugliandolo, J. Kurchan, J. Stat. Mech.: Theor. Exp. 09, P09013/1 (2005)

    Google Scholar 

  121. R. Harris, A. Rákos, G. Schütz, Europhys. Lett. 75, 227 (2006)

    Article  MathSciNet  Google Scholar 

  122. D. Evans, D. Searles, L. Rondoni, Phys. Rev. E 71, 056120/1 (2005)

    Google Scholar 

  123. J. Porra, K.G. Wang, J.Masoliver, Phys. Rev. E 53, 5872 (1996)

    Article  Google Scholar 

  124. E. Lutz, Phys. Rev. E 64, 051106/1 (2001)

    Google Scholar 

  125. A. Taloni, A. Chechkin, J. Klafter, Phys. Rev. Lett. 104, 160602/1 (2010)

    Google Scholar 

  126. D. Panja, J. Stat. Mech.: Theor. Exp. 06, P06011/1 (2010)

    Google Scholar 

  127. M. Sellitto, Fluctuations of entropy production in driven glasses (1998). Preprint arXiv:q-bio.PE/0404018

    Google Scholar 

  128. F. Zamponi, G. Ruocco, L. Angelani, Phys. Rev. E 71, 020101(R)/1 (2005)

    Google Scholar 

  129. D. Lauffenburger, A.F.Horwitz, Cell 84, 359 (1996)

    Article  Google Scholar 

  130. T. Lämmermann, M. Sixt, Curr. Opin. Cell Biol. 21(5), 636 (2009)

    Article  Google Scholar 

  131. P. Friedl, K. Wolf, J. Cell Biol. 188, 11 (2010)

    Article  Google Scholar 

  132. G. Dunn, A. Brown, J. Cell Sci. Suppl. 8, 81 (1987)

    Article  Google Scholar 

  133. C. Stokes, S.W. D.A. Lauffenburger, J. Cell Sci. 99, 419 (1991)

    Google Scholar 

  134. R. Hartmann, K. Lau, W. Chou, T. Coates, Biophys. J. 67, 2535 (1994)

    Article  Google Scholar 

  135. A. Upadhyaya, J. Rieu, J. Glazier, Y. Sawada, Physica A 293, 549 (2001)

    Article  Google Scholar 

  136. L. Li, S. Norrelykke, E. Cox, PLoS ONE 3, e2093/1 (2008)

    Google Scholar 

  137. H. Takagi, M. Sato, T. Yanagida, M. Ueda, PLoS ONE 3, e2648/1 (2008)

    Google Scholar 

  138. H. Bödeker, C. Beta, T. Frank, E. Bodenschatz, Europhys. Lett. 90, 28005/1 (2010)

    Google Scholar 

  139. E. Barkai, R. Silbey, J. Phys. Chem. B 104, 3866 (2000)

    Article  Google Scholar 

  140. R. Gorenflo, F. Mainardi, in Fractals and Fractional Calculus in Continuum Mechanics, ed. by A. Carpinteri, F. Mainardi. CISM Courses and Lecture Notes, vol. 378 (Springer, Berlin, 1997), pp. 223–276

    Google Scholar 

  141. D. Martin, M. Forstner, J. Käs, Biophys. J. 83, 2109 (2002)

    Article  Google Scholar 

  142. W. Schneider, W. Wyss, J. Math. Phys. 30, 134 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  143. S. Eule, R. Friedrich, F. Jenko, D. Kleinhans, J. Phys. Chem. B 111, 11474 (2007)

    Article  Google Scholar 

  144. C. Semmrich, T. Storz, J. Glaser, R. Merkel, A. Bausch, K. Kroy, Proc. Natl. Acad. Sci. 104, 20199 (2007)

    Article  Google Scholar 

  145. O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Rev. Mod. Phys. 83(1), 81 (2011). doi:10.1103/RevModPhys.83.81

    Article  Google Scholar 

  146. G. Viswanathan, M. da Luz, E. Raposo, H. Stanley, The Physics of Foraging (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

Download references

Acknowledgment

Each of the four sections reflects the collaboration with colleagues, without whom the work presented here would not have been possible. The second section benefitted very much from discussions with R. Zweimüler, whom the author thanks very much for a lot of mathematical insight into aspects of infinite ergodic theory. Particularly, the author is indebted to his former postdoc P. Howard, who did brilliant work on calculating generalized chaos quantities for the Pomeau–Manneville map. Regarding the third section, credit goes to his former Ph.D student N.Korabel for joint work that formed part of his Ph.D thesis. A.V. Chechkin significantly contributed to the same section as well as performed major research on the topic covered by the fourth one. The author is deeply indebted to him for his long-term collaboration on anomalous stochastic processes. P. Dieterich was the driving force behind the project reviewed in the fifth section. The author thanks him for much insight into the biophysical aspects of biological cell migration. Finally, he wishes to thank the editors of this book for their patience with this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Klages .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klages, R. (2013). Weak Chaos, Infinite Ergodic Theory, and Anomalous Dynamics. In: Leoncini, X., Leonetti, M. (eds) From Hamiltonian Chaos to Complex Systems. Nonlinear Systems and Complexity, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6962-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6962-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6961-2

  • Online ISBN: 978-1-4614-6962-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics