Statistical Convergence of q-Operators

  • Ali Aral
  • Vijay Gupta
  • Ravi P. Agarwal
Chapter

Abstract

One of the most recently studied subject in approximation theory is the approximation of function by linear positive operators using A-statistical convergence or a matrix summability method.

References

  1. 1.
    U. Abel, V. Gupta, An estimate of the rate of convergence of a Bezier variant of the Baskakov–Kantorovich operators for bounded variation functions. Demons. Math. 36(1), 123–136 (2003)MathSciNetMATHGoogle Scholar
  2. 2.
    U. Abel, M. Ivan, Some identities for the operator of Bleimann, Butzer and Hahn involving divided differences. Calcolo 36, 143–160 (1999)MathSciNetMATHGoogle Scholar
  3. 3.
    U. Abel, V. Gupta, R.N. Mohapatra, Local approximation by a variant of Bernstein Durrmeyer operators. Nonlinear Anal. Ser. A: Theor. Meth. Appl. 68(11), 3372–3381 (2008)MathSciNetMATHGoogle Scholar
  4. 4.
    M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. National Bureau of Standards Applied Mathematics, Series 55, Issued June (Dover, New York, 1964)Google Scholar
  5. 5.
    R.P. Agarwal, V. Gupta, On q-analogue of a complex summation-integral type operators in compact disks. J. Inequal. Appl. 2012, 111 (2012). doi:10.1186/1029-242X-2012-111MathSciNetGoogle Scholar
  6. 6.
    O. Agratini, Approximation properties of a generalization of Bleimann, Butzer and Hahn operators. Math. Pannon. 9, 165–171 (1988)MathSciNetGoogle Scholar
  7. 7.
    O. Agratini, A class of Bleimann, Butzer and Hahn type operators. An. Univ. Timişoara Ser. Math. Inform. 34, 173–180 (1996)MathSciNetGoogle Scholar
  8. 8.
    O. Agratini, Note on a class of operators on infinite interval. Demons. Math. 32, 789–794 (1999)MathSciNetMATHGoogle Scholar
  9. 9.
    O. Agratini, Linear operators that preserve some test functions. Int. J. Math. Math. Sci. 8, 1–11 (2006) [Art ID 94136]Google Scholar
  10. 10.
    O. Agratini, G. Nowak, On a generalization of Bleimann, Butzer and Hahn operators based on q-integers. Math. Comput. Model. 53(5–6), 699–706 (2011)MathSciNetMATHGoogle Scholar
  11. 11.
    J.W. Alexander, Functions which map the interior of the unit circle upon simple region. Ann. Math. Sec. Ser. 17, 12–22 (1915)MATHGoogle Scholar
  12. 12.
    F. Altomare, R. Amiar, Asymptotic formula for positive linear operators. Math. Balkanica (N.S.) 16(1–4), 283–304 (2002)Google Scholar
  13. 13.
    F. Altomare, M. Campiti, Korovkin Type Approximation Theory and Its Application (Walter de Gruyter Publications, Berlin, 1994)Google Scholar
  14. 14.
    R. Álvarez-Nodarse, M.K. Atakishiyeva, N.M. Atakishiyev, On q-extension of the Hermite polynomials H n x with the continuous orthogonality property on R. Bol. Soc. Mat. Mexicana (3) 8, 127–139 (2002)Google Scholar
  15. 15.
    G.A. Anastassiou, Global smoothness preservation by singular integrals. Proyecciones 14(2), 83–88 (1995)MathSciNetMATHGoogle Scholar
  16. 16.
    G.A. Anastassiou, A. Aral, Generalized Picard singular integrals. Comput. Math. Appl. 57(5), 821–830 (2009)MathSciNetMATHGoogle Scholar
  17. 17.
    G.A. Anasstasiou, A. Aral, On Gauss–Weierstrass type integral operators. Demons. Math. XLIII(4), 853–861 (2010)Google Scholar
  18. 18.
    G.A. Anastassiou, S.G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation (Birkhäuser, Boston, 2000)Google Scholar
  19. 19.
    G.A. Anastassiou, S.G. Gal, Convergence of generalized singular integrals to the unit, univariate case. Math. Inequal. Appl. 3(4), 511–518 (2000)MathSciNetMATHGoogle Scholar
  20. 20.
    G.E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999)MATHGoogle Scholar
  21. 21.
    T.M. Apostal, Mathematical Analysis (Addison-Wesley, Reading, 1971)Google Scholar
  22. 22.
    A. Aral, On convergence of singular integrals with non-isotropic kernels. Comm. Fac. Sci. Univ. Ank. Ser. A1 50, 88–98 (2001)Google Scholar
  23. 23.
    A. Aral, On a generalized λ-Gauss–Weierstrass singular integrals. Fasc. Math. 35, 23–33 (2005)MathSciNetMATHGoogle Scholar
  24. 24.
    A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals. J. Comput. Anal. Appl. 8(3), 246–261 (2006)MathSciNetGoogle Scholar
  25. 25.
    A. Aral, A generalization of Szász–Mirakyan operators based on q-integers. Math. Comput. Model. 47(9–10), 1052–1062 (2008)MathSciNetMATHGoogle Scholar
  26. 26.
    A. Aral, Pointwise approximation by the generalization of Picard and Gauss–Weierstrass singular integrals. J. Concr. Appl. Math. 6(4), 327–339 (2008)MathSciNetMATHGoogle Scholar
  27. 27.
    A. Aral, O. Doğru, Bleimann Butzer and Hahn operators based on q-integers. J. Inequal. Appl. 2007, 12 pp. (2007) [Article ID 79410]Google Scholar
  28. 28.
    A. Aral, S.G. Gal, q-Generalizations of the Picard and Gauss–Weierstrass singular integrals. Taiwan. J. Math. 12(9), 2501–2515 (2008)Google Scholar
  29. 29.
    A. Aral, V. Gupta, q-Derivatives and applications to the q-Szász Mirakyan operators. Calcalo 43(3), 151–170 (2006)Google Scholar
  30. 30.
    A. Aral, V. Gupta, On q-Baskakov type operators. Demons. Math. 42(1), 109–122 (2009)MathSciNetMATHGoogle Scholar
  31. 31.
    A. Aral, V. Gupta, On the Durrmeyer type modification of the q Baskakov type operators. Nonlinear Anal.: Theor. Meth. Appl. 72(3–4), 1171–1180 (2010)Google Scholar
  32. 32.
    A. Aral, V. Gupta, Generalized q-Baskakov operators. Math. Slovaca 61(4), 619–634 (2011)MathSciNetMATHGoogle Scholar
  33. 33.
    A. Aral, V. Gupta, Generalized Szász Durrmeyer operators. Lobachevskii J. Math. 32(1), 23–31 (2011)MathSciNetMATHGoogle Scholar
  34. 34.
    N.M. Atakishiyev, M.K. Atakishiyeva, A q-analog of the Euler gamma integral. Theor. Math. Phys. 129(1), 1325–1334 (2001)MATHGoogle Scholar
  35. 35.
    A. Attalienti, M. Campiti, Bernstein-type operators on the half line. Czech. Math. J. 52(4), 851–860 (2002)MathSciNetMATHGoogle Scholar
  36. 36.
    D. Aydin, A. Aral, Some approximation properties of complex q-Gauss–Weierstrass type integral operators in the unit disk. Oradea Univ. Math. J. Tom XX(1), 155–168 (2013)Google Scholar
  37. 37.
    V.A. Baskakov, An example of sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk. SSSR 113, 249–251 (1957)MathSciNetMATHGoogle Scholar
  38. 38.
    C. Berg, From discrete to absolutely continuous solution of indeterminate moment problems. Arap. J. Math. Sci. 4(2), 67–75 (1988)Google Scholar
  39. 39.
    G. Bleimann, P.L. Butzer, L. Hahn, A Bernstein type operator approximating continuous function on the semi-axis. Math. Proc. A 83, 255–262 (1980)MathSciNetGoogle Scholar
  40. 40.
    K. Bogalska, E. Gojtka, M. Gurdek, L. Rempulska, The Picard and the Gauss–Weierstrass singular integrals of functions of two variable. Le Mathematiche LII(Fasc 1), 71–85 (1997)Google Scholar
  41. 41.
    F. Cao, C. Ding, Z. Xu, On multivariate Baskakov operator. J. Math. Anal. Appl. 307, 274–291 (2005)MathSciNetMATHGoogle Scholar
  42. 42.
    E.W. Cheney, Introduction to Approximation Theory (McGraw-Hill, New York, 1966)MATHGoogle Scholar
  43. 43.
    I. Chlodovsky, Sur le développement des fonctions d éfinies dans un interval infini en séries de polynômes de M. S. Bernstein. Compos. Math. 4, 380–393 (1937)MathSciNetGoogle Scholar
  44. 44.
    W. Congxin, G. Zengtai, On Henstock integral of fuzzy-number-valued functions, I. Fuzzy Set Syst. 115(3), 377–391 (2000)MATHGoogle Scholar
  45. 45.
    O. Dalmanoglu, Approximation by Kantorovich type q-Bernstein operators, in Proceedings of the 12th WSEAS International Conference on Applied Mathematics, Cairo, Egypt (2007), pp. 113–117Google Scholar
  46. 46.
    P.J. Davis, Interpolation and Approximation (Dover, New York, 1976)Google Scholar
  47. 47.
    M.-M. Derriennic, Sur l’approximation de functions integrable sur [0, 1] par des polynomes de Bernstein modifies. J. Approx. Theor. 31, 323–343 (1981)MathSciNetGoogle Scholar
  48. 48.
    M.-M. Derriennic, Modified Bernstein polynomials and Jacobi polynomials in q-calculus. Rend. Circ. Mat. Palermo, Ser. II 76(Suppl.), 269–290 (2005)Google Scholar
  49. 49.
    A. De Sole, V.G. Kac, On integral representation of q-gamma and q-beta functions. AttiAccad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16(1), 11–29 (2005)Google Scholar
  50. 50.
    R.A. DeVore, G.G. Lorentz, Constructive Approximation (Springer, Berlin, 1993)MATHGoogle Scholar
  51. 51.
    Z. Ditzian, V. Totik, Moduli of Smoothness (Springer, New York, 1987)MATHGoogle Scholar
  52. 52.
    O. Doğru, On Bleimann, Butzer and Hahn type generalization of Balázs operators, Dedicated to Professor D.D. Stancu on his 75th birthday. Studia Univ. Babeş-Bolyai Math. 47, 37–45 (2002)Google Scholar
  53. 53.
    O. Doğru, O. Duman, Statistical approximation of Meyer–König and Zeller operators based on the q-integers. Publ. Math. Debrecen 68, 190–214 (2006)Google Scholar
  54. 54.
    O. Dogru, V. Gupta, Monotonocity and the asymptotic estimate of Bleimann Butzer and Hahn operators on q integers. Georgian Math. J. 12, 415–422 (2005)MathSciNetMATHGoogle Scholar
  55. 55.
    O. Dogru, V. Gupta, Korovkin type approximation properties of bivariate q-Meyer König and Zeller operators. Calcolo 43, 51–63 (2006)MathSciNetMATHGoogle Scholar
  56. 56.
    D. Dubois, H. Prade, Fuzzy numbers: an overview, in Analysis of Fuzzy Information, vol.1: Mathematics and Logic (CRC Press, Boca Raton, 1987), pp. 3–39Google Scholar
  57. 57.
    O. Duman, C. Orhan, Statistical approximation by positive linear operators. Stud. Math. 161, 187–197 (2006)MathSciNetGoogle Scholar
  58. 58.
    J.L. Durrmeyer, Une formule d’inversion de la Transformee de Laplace, Applications a la Theorie des Moments, These de 3e Cycle, Faculte des Sciences de l’ Universite de Paris, 1967Google Scholar
  59. 59.
    T. Ernst, The history of q-calculus and a new method, U.U.D.M Report 2000, 16, ISSN 1101-3591, Department of Mathematics, Upsala University, 2000Google Scholar
  60. 60.
    S. Ersan, O. Doğru, Statistical approximation properties of q-Bleimann, Butzer and Hahn operators. Math. Comput. Model. 49(7–8), 1595–1606 (2009)MATHGoogle Scholar
  61. 61.
    Z. Finta, N.K. Govil, V. Gupta, Some results on modified Szász–Mirakyan operators. J. Math. Anal. Appl. 327(2), 1284–1296 (2007)MathSciNetMATHGoogle Scholar
  62. 62.
    Z. Finta, V. Gupta, Approximation by q Durrmeyer operators. J. Appl. Math. Comput. 29(1–2), 401–415 (2009)MathSciNetMATHGoogle Scholar
  63. 63.
    Z. Finta, V. Gupta, Approximation properties of q-Baskakov operators. Cent. Eur. J. Math. 8(1), 199–211 (2009)MathSciNetGoogle Scholar
  64. 64.
    J.A. Friday, H.I. Miller, A matrix characterization of statistical convergence. Analysis 11, 59–66 (1991)MathSciNetGoogle Scholar
  65. 65.
    A.D. Gadzhiev, The convergence problem for a sequence of positive linear operators on unbounded sets and theoems analogous to that of P.P. Korovkin. Dokl. Akad. Nauk. SSSR 218(5), 1001–1004 (1974) [in Russian]; Sov. Math. Dokl. 15(5), 1433–1436 (1974) [in English]Google Scholar
  66. 66.
    A.D. Gadjiev, On Korovkin type theorems. Math. Zametki 20, 781–786 (1976) [in Russian]Google Scholar
  67. 67.
    A.D. Gadjiev, A. Aral, The weighted L p-approximation with positive operators on unbounded sets, Appl. Math. Letter 20(10), 1046–1051 (2007)MathSciNetMATHGoogle Scholar
  68. 68.
    A.D. Gadjiev, Ö. Çakar, On uniform approximation by Bleimann, Butzer and Hahn operators on all positive semi-axis. Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 19, 21–26 (1999)MATHGoogle Scholar
  69. 69.
    A.D. Gadjiev, Orhan, Some approximation theorems via statistical convergence. Rocky Mt. J. Math. 32(1), 129–138 (2002)MathSciNetMATHGoogle Scholar
  70. 70.
    A.D. Gadjiev, R.O. Efendiev, E. Ibikli, Generalized Bernstein Chlodowsky polynomials. Rocky Mt. J. Math. 28(4), 1267–1277 (1998)MathSciNetMATHGoogle Scholar
  71. 71.
    A.D. Gadjiev, R.O. Efendiyev, E. İbikli, On Korovkin type theorem in the space of locally integrable functions. Czech. Math. J. 53(128)(1), 45–53 (2003)Google Scholar
  72. 72.
    S.G. Gal, Degree of approximation of continuous function by some singular integrals. Rev. Anal. Numér. Théor. Approx. XXVII(2), 251–261 (1998)Google Scholar
  73. 73.
    S.G. Gal, Remark on degree of approximation of continuous function by some singular integrals. Math. Nachr. 164, 197–199 (1998)MathSciNetGoogle Scholar
  74. 74.
    S.G. Gal, Remarks on the approximation of normed spaces valued functions by some linear operators, in Mathematical Analysis and Approximation Theory (Mediamira Science Publisher, Cluj-Napoca, 2005), pp. 99–109Google Scholar
  75. 75.
    S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials (Birkhäuser, Boston, 2008)MATHGoogle Scholar
  76. 76.
    S.G. Gal, Approximation by Complex Bernstein and Convolution-Type Operators (World Scientific, Singapore, 2009)MATHGoogle Scholar
  77. 77.
    S.G. Gal, V. Gupta, Approximation of vector-valued functions by q-Durrmeyer operators with applications to random and fuzzy approximation. Oradea Univ. Math. J. 16, 233–242 (2009)MathSciNetMATHGoogle Scholar
  78. 78.
    S.G. Gal, V. Gupta, Approximation by a Durrmeyer-type operator in compact disk. Ann. Univ. Ferrara 57, 261–274 (2011)MathSciNetMATHGoogle Scholar
  79. 79.
    S.G. Gal, V. Gupta, Quantative estimates for a new complex Durrmeyer operator in compact disks. Appl. Math. Comput. 218(6), 2944–2951 (2011)MathSciNetMATHGoogle Scholar
  80. 80.
    S. Gal, V. Gupta, N.I. Mahmudov, Approximation by a complex q Durrmeyer type operators. Ann. Univ. Ferrara 58(1), 65–87 (2012)MathSciNetGoogle Scholar
  81. 81.
    G. Gasper, M. Rahman, Basic Hypergeometrik Series. Encyclopedia of Mathematics and Its Applications, vol. 35 (Cambridge University Press, Cambridge, 1990)Google Scholar
  82. 82.
    T.N.T. Goodman, A. Sharma, A Bernstein type operators on the simplex. Math. Balkanica 5, 129–145 (1991)MathSciNetMATHGoogle Scholar
  83. 83.
    N.K. Govil, V. Gupta, Convergence rate for generalized Baskakov type operators. Nonlinear Anal. 69(11), 3795–3801 (2008)MathSciNetMATHGoogle Scholar
  84. 84.
    N.K. Govil, V. Gupta, Convergence of q-Meyer–König-Zeller–Durrmeyer operators. Adv. Stud. Contemp. Math. 19, 97–108 (2009)MathSciNetMATHGoogle Scholar
  85. 85.
    V. Gupta, Rate of convergence by the Bézier variant of Phillips operators for bounded variation functions. Taiwan. J. Math. 8(2), 183–190 (2004)MATHGoogle Scholar
  86. 86.
    V. Gupta, Some approximation properties on q-Durrmeyer operators. Appl. Math. Comput. 197(1), 172–178 (2008)MathSciNetMATHGoogle Scholar
  87. 87.
    V. Gupta, A. Aral, Convergence of the q analogue of Szász-Beta operators. Appl. Math. Comput. 216, 374–380 (2010)MathSciNetMATHGoogle Scholar
  88. 88.
    V. Gupta, A. Aral, Some approximation properties of q Baskakov Durrmeyer operators. Appl. Math. Comput. 218(3), 783–788 (2011)MathSciNetMATHGoogle Scholar
  89. 89.
    V. Gupta, Z. Finta, On certain q Durrmeyer operators. Appl. Math. Comput. 209, 415–420 (2009)MathSciNetMATHGoogle Scholar
  90. 90.
    V. Gupta, M.A. Noor, Convergence of derivatives for certain mixed Szász-Beta operators. J. Math. Anal. Appl. 321, 1–9 (2006)MathSciNetMATHGoogle Scholar
  91. 91.
    V. Gupta, C. Radu, Statistical approximation properties of q Baskakov Kantorovich operators. Cent. Eur. J. Math. 7(4), 809–818 (2009)MathSciNetMATHGoogle Scholar
  92. 92.
    V. Gupta, H. Sharma, Recurrence formula and better approximation for q Durrmeyer operators. Lobachevskii J. Math. 32(2), 140–145 (2011)MathSciNetMATHGoogle Scholar
  93. 93.
    V. Gupta, G.S. Srivastava, On the rate of convergence of Phillips operators for functions of bounded variation. Comment. Math. XXXVI, 123–130 (1996)Google Scholar
  94. 94.
    V. Gupta, H. Wang, The rate of convergence of q-Durrmeyer operators for 0 < q < 1. Math. Meth. Appl. Sci. 31(16), 1946–1955 (2008)MathSciNetMATHGoogle Scholar
  95. 95.
    V. Gupta, T. Kim, J. Choi, Y.-H. Kim, Generating functions for q-Bernstein, q-Meyer–König–Zeller and q-Beta basis. Autom. Comput. Math. 19(1), 7–11 (2010)Google Scholar
  96. 96.
    W. Heping, Korovkin-type theorem and application. J. Approx. Theor. 132, 258–264 (2005)MathSciNetMATHGoogle Scholar
  97. 97.
    W. Heping, Properties of convergence for the q-Meyer–König and Zeller operators. J. Math. Anal. Appl. 335(2), 1360–1373 (2007)MathSciNetMATHGoogle Scholar
  98. 98.
    W. Heping, Properties of convergence for ω, q Bernstein polynomials. J. Math. Anal. Appl. 340(2), 1096–1108 (2008)MathSciNetMATHGoogle Scholar
  99. 99.
    W. Heping, F. Meng, The rate of convergence of q-Bernstein polynomials for 0 < q < 1. J. Approx. Theor. 136, 151–158 (2005)MATHGoogle Scholar
  100. 100.
    W. Heping, X. Wu, Saturation of convergence of q-Bernstein polynomials in the case q ≥ 1. J. Math. Anal. Appl. 337(1), 744–750 (2008)MathSciNetMATHGoogle Scholar
  101. 101.
    V.P. II’in, O.V. Besov, S.M. Nikolsky, The Integral Representation of Functions and Embedding Theorems (Nauka, Moscow, 1975) [in Russian]Google Scholar
  102. 102.
    A. II’inski, S. Ostrovska, Convergence of generalized Bernstein polynomials. J. Approx. Theor. 116, 100–112 (2002)Google Scholar
  103. 103.
    F.H. Jackson, On a q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)MATHGoogle Scholar
  104. 104.
    V. Kac, P. Cheung, Quantum Calculus (Springer, New York, 2002)MATHGoogle Scholar
  105. 105.
    T. Kim, q-Generalized Euler numbers and polynomials. Russ. J. Math. Phys. 13(3), 293–298 (2006)Google Scholar
  106. 106.
    T. Kim, Some identities on the q-integral representation of the product of several q-Bernstein-type polynomials. Abstr. Appl. Anal. 2011, 11 pp. (2011). doi:10.1155/2011/634675 [Article ID 634675]Google Scholar
  107. 107.
    T.H. Koornwinder, q-Special functions, a tutorial, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics, ed. by M. Gerstenhaber, J. Stasheff. Contemporary Mathematics, vol. 134 (American Mathematical Society, Providence, 1992)Google Scholar
  108. 108.
    S.L. Lee, G.M. Phillips, Polynomial interpolation at points of a geometric mesh on a triangle. Proc. R. Soc. Edinb. 108A, 75–87 (1988)MathSciNetGoogle Scholar
  109. 109.
    B. Lenze, Bernstein–Baskakov–Kantorovich operators and Lipscitz type maximal functions, in Approximation Theory (Kecskemét, Hungary). Colloq. Math. Soc. János Bolyai, vol. 58 (1990), pp. 469–496MathSciNetGoogle Scholar
  110. 110.
    A. Lesniewicz, L. Rempulska, J. Wasiak, Approximation properties of the Picard singular integral in exponential weighted spaces. Publ. Mat. 40, 233–242 (1996)MathSciNetMATHGoogle Scholar
  111. 111.
    Y.-C. Li, S.-Y. Shaw, A proof  of Hölder’s inequality using the Cauchy–Schwarz inequality. J. Inequal. Pure Appl. Math. 7(2), 1–3 (2006) [Article 62]Google Scholar
  112. 112.
    A.-J. López-Moreno, Weighted silmultaneous approximation with Baskakov type operators. Acta Math. Hung. 104, 143–151 (2004)MATHGoogle Scholar
  113. 113.
    G.G. Lorentz, Bernstein Polynomials. Math. Expo., vol. 8 (University of Toronto Press, Toronto, 1953)Google Scholar
  114. 114.
    G.G. Lorentz, Approximation of Functions (Holt, Rinehart and Wilson, New York, 1966)MATHGoogle Scholar
  115. 115.
    L. Lupas, A property of S. N. Bernstein operators. Mathematica (Cluj) 9(32), 299–301 (1967)Google Scholar
  116. 116.
    L. Lupas, On star shapedness preserving properties of a class of linear positive operators. Mathematica (Cluj) 12(35), 105–109 (1970)Google Scholar
  117. 117.
    A. Lupas, A q-analogue of the Bernstein operator, in Seminar on Numerical and Statistical Calculus (Cluj-Napoca, 1987), pp. 85–92. Preprint, 87-9 Univ. Babes-Bolyai, Cluj. MR0956939 (90b:41026)Google Scholar
  118. 118.
    N. Mahmoodov, V. Gupta, H. Kaffaoglu, On certain q-Phillips operators. Rocky Mt. J. Math. 42(4), 1291–1312 (2012)Google Scholar
  119. 119.
    N.I. Mahmudov, On q-parametric Szász–Mirakjan operators. Mediterr. J. Math. 7(3), 297–311 (2010)MathSciNetMATHGoogle Scholar
  120. 120.
    N.I. Mahmudov, P. Sabancıgil, q-Parametric Bleimann Butzer and Hahn operators. J. Inequal. Appl. 2008, 15 pp. (2008) [Article ID 816367]Google Scholar
  121. 121.
    N.I. Mahmudov, P. Sabancigil, On genuine q-Bernstein–Durrmeyer operators. Publ. Math. Debrecen 76(4) (2010)Google Scholar
  122. 122.
    G. Mastroianni, A class of positive linear operators. Rend. Accad. Sci. Fis. Mat. Napoli 48, 217–235 (1980)MathSciNetGoogle Scholar
  123. 123.
    C.P. May, On Phillips operator. J. Approx. Theor. 20(4), 315–332 (1977)MATHGoogle Scholar
  124. 124.
    I. Muntean, Course of Functional Analysis. Spaces of Linear and Continuous Mappings, vol. II (Faculty of Mathematics, Babes-Bolyai’ University Press, Cluj-Napoca, 1988) [in Romanian]Google Scholar
  125. 125.
    S. Ostrovska, q-Bernstein polynomials and their iterates. J. Approx. Theor. 123, 232–255 (2003)MathSciNetMATHGoogle Scholar
  126. 126.
    S. Ostrovska, On the improvement of analytic properties under the limit q-Bernstein operator. J. Approx. Theor. 138(1), 37–53 (2006)MathSciNetMATHGoogle Scholar
  127. 127.
    S. Ostrovska, On the Lupas q-analogue of the Bernstein operator. Rocky Mt. J. Math. 36(5), 1615–1629 (2006)MathSciNetMATHGoogle Scholar
  128. 128.
    S. Ostrovska, The first decade of the q-Bernstein polynomials: results and perspectives. J. Math. Anal. Approx. Theor. 2, 35–51 (2007)MathSciNetMATHGoogle Scholar
  129. 129.
    S. Ostrovska, The sharpness of convergence results for q Bernstein polynomials in the case q > 1. Czech. Math. J. 58(133), 1195–1206 (2008)MathSciNetMATHGoogle Scholar
  130. 130.
    S. Ostrovska, On the image of the limit q Bernstein operator. Math. Meth. Appl. Sci. 32(15), 1964–1970 (2009)MathSciNetMATHGoogle Scholar
  131. 131.
    S. Pethe, On the Baskakov operator. Indian J. Math. 26(1–3), 43–48 (1984)MathSciNetMATHGoogle Scholar
  132. 132.
    G.M. Phillips, On generalized Bernstein polynomials, in Numerical Analysis, ed. by D.F. Griffiths, G.A. Watson (World Scientific, Singapore, 1996), pp. 263–269Google Scholar
  133. 133.
    G.M. Phillips, Bernstein polynomials based on the q- integers, The heritage of P.L. Chebyshev: A Festschrift in honor of the 70th-birthday of Professor T. J. Rivlin. Ann. Numer. Math. 4, 511–518 (1997)Google Scholar
  134. 134.
    G.M. Phillips, Interpolation and Approximation by Polynomials (Springer, Berlin, 2003)MATHGoogle Scholar
  135. 135.
    R.S. Phillips, An inversion formula for Laplace transforms and semi-groups of linear operators. Ann. Math. Sec. Ser. 59, 325–356 (1954)MATHGoogle Scholar
  136. 136.
    C. Radu, On statistical approximation of a general class of positive linear operators extended in q-calculus. Appl. Math. Comput. 215(6), 2317–2325 (2009)MathSciNetMATHGoogle Scholar
  137. 137.
    P.M. Rajković, M.S. Stanković, S.D. Marinkovic, Mean value theorems in q-calculus. Math. Vesnic. 54, 171–178 (2002)MATHGoogle Scholar
  138. 138.
    T.J. Rivlin, An Introduction to the Approximation of Functions (Dover, New York, 1981)MATHGoogle Scholar
  139. 139.
    A. Sahai, G. Prasad, On simultaneous approximation by modified Lupaş operators. J. Approx. Theor. 45, 122–128 (1985)MathSciNetMATHGoogle Scholar
  140. 140.
    I.J. Schoenberg, On polynomial interpolation at the points of a geometric progression. Proc. R. Soc. Edinb. 90A, 195–207 (1981)MathSciNetGoogle Scholar
  141. 141.
    K. Seip, A note on sampling of bandlinited stochastic processes. IEEE Trans. Inform. Theor. 36(5), 1186 (1990)Google Scholar
  142. 142.
    R.P. Sinha, P.N. Agrawal, V. Gupta, On simultaneous approximation by modified Baskakov operators. Bull. Soc. Math. Belg. Ser. B 43(2), 217–231 (1991)MathSciNetMATHGoogle Scholar
  143. 143.
    Z. Song, P. Wang, W. Xie, Approximation of second-order moment processes from local averages. J. Inequal. Appl. 2009, 8 pp. (2009) [Article Id 154632]Google Scholar
  144. 144.
    H.M. Srivastava, V. Gupta, A certain family of summation-integral type operators. Math. Comput. Model. 37, 1307–1315 (2003)MathSciNetMATHGoogle Scholar
  145. 145.
    D.D. Stancu, Approximation of functions by a new class of linear polynomial operators. Rev. Roumanine Math. Pures Appl. 13, 1173–1194 (1968)MathSciNetMATHGoogle Scholar
  146. 146.
    E.M. Stein, G. Weiss, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)MATHGoogle Scholar
  147. 147.
    E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, 1971)MATHGoogle Scholar
  148. 148.
    O. Szász, Generalization of S. Bernstein’s polynomials to infinite interval. J. Research Nat. Bur. Stand. 45, 239–245 (1959)Google Scholar
  149. 149.
    J. Thomae, Beitrage zur Theorie der durch die Heinsche Reihe. J. Reine. Angew. Math. 70, 258–281 (1869)MATHGoogle Scholar
  150. 150.
    T. Trif, Meyer, König and Zeller operators based on the q-integers. Rev. Anal. Numér. Théor. Approx. 29, 221–229 (2002)MathSciNetGoogle Scholar
  151. 151.
    V.S. Videnskii, On some class of q-parametric positive operators, Operator Theory: Advances and Applications 158, 213–222 (2005)MathSciNetGoogle Scholar
  152. 152.
    V.S. Videnskii, On q-Bernstein polynomials and related positive linear operators, in Problems of Modern Mathematics and Mathematical Education Hertzen readings (St.-Petersburg, 2004), pp. 118–126 [in Russian]Google Scholar
  153. 153.
    I. Yuksel, N. Ispir, Weighted approximation by a certain family of summation integral-type operators. Comput. Math. Appl. 52(10–11), 1463–1470 (2006)MathSciNetMATHGoogle Scholar
  154. 154.
    L.A. Zadeh, Fuzzy sets. Inform. Contr. 8, 338–353 (1965)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ali Aral
    • 1
  • Vijay Gupta
    • 2
  • Ravi P. Agarwal
    • 3
  1. 1.Department of MathematicsKırıkkale UniversityYahşihanTurkey
  2. 2.School of Applied SciencesNetaji Subhas Institute of TechnologyNew DelhiIndia
  3. 3.Department of MathematicsTexas A&M University-KingsvilleKingsvilleUSA

Personalised recommendations