Ureteroscopy for Ureteral Stones: Case Discussion of Impacted Stone

Chapter

Abstract

Technological advances have led to remarkable improvements in the outcomes after ureteroscopy (URS) for ureteral stones. A landmark systematic review and comprehensive analysis of outcomes in 2007 by the American Urological Association (AUA) and European Association of Urology (EAU) showed that URS favorably compares to shock wave lithotripsy (SWL) for all stone locations. URS for distal ureteral stones yielded a 94 % stone-free rate which decreased only slightly to 78–79 % for large (>10 mm), mid, or proximal ureteral stones. After medical expulsive therapy, URS has also been shown to be the most cost-effective therapy for all ureteral stones. Notably, prospective randomized trials comparing shock wave lithotripsy (SWL) to semirigid URS for either proximal or distal ureteral stones showed lower costs and statistically significant higher initial stone-free rates with URS. With a continuous trend towards innovation and improvement of endoscopic devices, one can expect that the efficacy and use of URS for the treatment of ureteral stones will only rise. This chapter provides an outline of the technical approach to URS for ureteral stones. We begin with the importance of preoperative counseling, followed by an overall management algorithm, description of surgical equipment, an intraoperative algorithm, and then finish with the postoperative management and recommended follow-up. At the conclusion of the chapter the treatment of a patient with a large impacted proximal ureteral stone will be discussed.

Keywords

Catheter Torque Perforation Lasix Intussusception 

References

  1. 1.
    Preminger GM, Tiselius HG, Assimos DG, et al. 2007 Guideline for the management of ureteral calculi. Eur Urol. 2007;52(6):1610–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Lotan Y, Gettman MT, Roehrborn CG, Cadeddu JA, Pearle MS. Management of ureteral calculi: a cost comparison and decision making analysis. J Urol. 2002;167(4):1621–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Salem HK. A prospective randomized study comparing shock wave lithotripsy and semirigid ureteroscopy for the management of proximal ureteral calculi. Urology. 2009;74(6):1216–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Verze P, Imbimbo C, Cancelmo G, et al. Extracorporeal shockwave lithotripsy vs. ureteroscopy as first-line therapy for patients with single, distal ureteric stones: a prospective randomized study. BJU Int. 2010;106(11):1748–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Parsons JK, Hergan LA, Sakamoto K, Lakin C. Efficacy of alpha-blockers for the treatment of ureteral stones. J Urol. 2007;177(3):983–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Miller OF, Kane CJ. Time to stone passage for observed ureteral calculi: a guide for patient education. J Urol. 1999;162(3 Pt 1):688–90. discussion 690–1.PubMedCrossRefGoogle Scholar
  7. 7.
    Pearle MS, Pierce HL, Miller GL, et al. Optimal method of urgent decompression of the collecting system for obstruction and infection due to ureteral calculi. J Urol. 1998;160(4):1260–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Yakoubi R, Lemdani M, Monga M, Villers A, Koenig P. Is there a role for alpha-blockers in ureteral stent related symptoms? A systematic review and meta-analysis. J Urol. 2011;186(3):928–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Kacker R, Zhoa L, Macejko A, et al. Radiographic parameters on noncontrast computerized tomography predictive of shock wave lithotripsy success. J Urol. 2008;179:1866–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Ng CF, Siu DY, Wong A, Goggins W, Chan ES, Wong KT. Development of a scoring system from noncontrast computerized tomography measurements to improve the selection of upper ureteral stone for extracorporeal shock wave lithotripsy. J Urol. 2009;181(3):1151–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Wiesenthal JG, Ghiculete D, D’A Honey RJ, Pace KT. Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res. 2010;38(4):307–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim SC, Burns EK, Lingeman JE, Paterson RF, McAteer JA, Williams JC Jr. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res. 2007;35(6):319–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Shen P, Jiang M, Yang J, et al. Use of ureteral stent in extracorporeal shock wave lithotripsy for upper urinary calculi: a systematic review and meta-analysis. J Urol. 2011;186(4):1328–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Ghoneim IA, El-Ghoneimy MN, El-Nagger AE, Hammoud KM, El-Gammal MY, Morsi AA. Extracorporeal shock wave lithotripsy in impacted upper ureteral stones: a prospective randomized comparison between stented and non-stented techniques. Urology. 2010;75(1):45–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Preminger GM, Tiselius HG, Assimos DG, et al. 2007 guideline for the management of ureteral calculi. J Urol. 2007;178(6):2418–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Tiselius HG, Ackermann D, Alken P, Buck C, Conort P, Gallucci M. Guidelines on urolithiasis. Eur Urol. 2001;40(4):362–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Park BH, Choi H, Kim JB, Chang YS. Analyzing the effect of distance from skin to stone by computed tomography scan on the extracorporeal shock wave lithotripsy stone-free rate of renal stones. Korean J Urol. 2012;53(1):40–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Ouzaid I, Al-Qahtani S, Dominique S, et al. A 970 Hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int. 2012;110(11 PtB):E438–42.Google Scholar
  19. 19.
    Watterson JD, Girvan AR, Cook AJ, et al. Safety and efficacy of holmium:YAG laser lithotripsy in patients with bleeding diatheses. J Urol. 2002;168(2):442–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Semins MJ, Trock BJ, Matlaga BR. The safety of ureteroscopy during pregnancy: a systematic review and meta-analysis. J Urol. 2009;181(1):139–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Tang L, Gao X, Xu B, et al. Placement of ureteral stent after uncomplicated ureteroscopy: do we really need it? Urology. 2011;78(6):1248–56.PubMedCrossRefGoogle Scholar
  22. 22.
    Sun X, Xia S, Lu J, Liu H, Han B, Li W. Treatment of large impacted proximal ureteral stones: randomized comparison of percutaneous antegrade ureterolithotripsy versus retrograde ureterolithotripsy. J Endourol. 2008;22(5):913–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Bader MJ, Eisner B, Porpiglia F, Preminger GM, Tiselius HG. Contemporary management of ureteral stones. Eur Urol. 2012;61(4):764–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Maheshwari PN, Oswal AT, Andankar M, Nanjappa KM, Bansal M. Is antegrade ureteroscopy better than retrograde ureteroscopy for impacted large upper ureteral calculi? J Endourol. 1999;13(6):441–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Karami H, Arbab AH, Hosseini SJ, Razzaghi MR, Simaei NR. Impacted upper-ureteral calculi >1 cm: blind access and totally tubeless percutaneous antegrade removal or retrograde approach? J Endourol. 2006;20(9):616–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Basiri A, Simforoosh N, Ziaee A, Shayaninasab H, Moghaddam SM, Zare S. Retrograde, antegrade, and laparoscopic approaches for the management of large, proximal ureteral stones: a randomized clinical trial. J Endourol. 2008;22(12):2677–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Kumar A, Mohanty NK, Jain M, Prakash S, Arora RP. A prospective randomized comparison between early (<48 hours of onset of colicky pain) versus delayed shockwave lithotripsy for symptomatic upper ureteral calculi: a single center experience. J Endourol. 2010;24(12):2059–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Kreshover JE, Dickstein RJ, Rowe C, Babayan RK, Wang DS. Predictors for negative ureteroscopy in the management of upper urinary tract stone disease. Urology. 2011;78(4):748–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Knapp PM, Kulb TB, Lingeman JE, et al. Extracorporeal shock wave lithotripsy-induced perirenal hematomas. J Urol. 1988;139(4):700–3.PubMedGoogle Scholar
  30. 30.
    Dhar NB, Thornton J, Karafa MT, Streem SB. A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. J Urol. 2004;172(6 Pt 1):2271–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Soyupek S, Armağan A, Koşar A, et al. Risk factors for the formation of a steinstrasse after shock wave lithotripsy. Urol Int. 2005;74(4):323–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Padhye AS, Yadav PB, Mahajan PM, et al. Shock wave lithotripsy as a primary modality for treating upper ureteric stones: a 10-year experience. Indian J Urol. 2008;24(4):486–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Taie K, Jasemi M, Khazaeli D, Fatholahi A. Prevalence and management of complications of ureteroscopy: a seven-year experience with introduction of a new maneuver to prevent ureteral avulsion. Urol J. 2012;9(1):356–60.PubMedGoogle Scholar
  34. 34.
    Ramaswamy K, Shah O. Antibiotic prophylaxis after uncomplicated ureteroscopic stone treatment: is there a difference? J Endourol. 2012;26(2):122.PubMedCrossRefGoogle Scholar
  35. 35.
    Joshi HB, Stainthorpe A, MacDonagh RP, Keeley Jr FX, Timoney AG, Barry MJ. Indwelling ureteral stents: evaluation of symptoms, quality of life and utility. J Urol. 2003;169(3):1065–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol. 2007;51(4):899–906.PubMedCrossRefGoogle Scholar
  37. 37.
    de la Rosette J, Assimos D, Desai M, et al. The Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study: indications, complications, and outcomes in 5803 patients. J Endourol. 2011;25(1):11–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Soucy F, Ko R, Duvdevani M, Nott L, Denstedy JD, Razvi H. Percutaneous nephrolithotomy for staghorn calculi: a single center’s experience over 15 years. J Endourol. 2009;23(10):1669–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Muslumanoglu AY, Tefekli A, Karadag MA, Tok A, Sari E, Berberogly Y. Impact of percutaneous access point number and location on complication and success rates in percutaneous nephrolithotomy. Urol Int. 2006;77(4):340–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Elsamra S, Pareek G. Complications of laparoscopic renal surgery. Int J Urol. 2010;17(3):206–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Liguori G, Antoniolli F, Trombetta C, et al. Comparative experimental evaluation of guidewire use in urology. Urology. 2008;72(2):286–9. discussion 289–90.PubMedCrossRefGoogle Scholar
  42. 42.
    Clayman M, Uribe CA, Eichel L, Gordon Z, McDougall EM, Clayman RV. Comparison of guide wires in urology. Which, when and why? J Urol. 2004;171(6 Pt 1):2146–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Sarkissian C, Korman E, Hendlin K, Monga M. Systematic evaluation of hybrid guidewires: shaft stiffness, lubricity, and tip configuration. Urology. 2012;79(3):513–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Kourambas J, Byrne RR, Preminger GM. Does a ureteral access sheath facilitate ureteroscopy? J Urol. 2001;165(3):789–93.PubMedCrossRefGoogle Scholar
  45. 45.
    Landman J, Venkatesh R, Ragab M, et al. Comparison of intrarenal pressure and irrigant flow during percutaneous nephroscopy with an indwelling ureteral catheter, ureteral occlusion balloon, and ureteral access sheath. Urology. 2002;60(4):584–7.PubMedCrossRefGoogle Scholar
  46. 46.
    L’esperance JO, Ekeruo WO, Scales Jr CD, et al. Effect of ureteral access sheath on stone-free rates in patients undergoing ureteroscopic management of renal calculi. Urology. 2005;66(2):252–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Monga M, Bhayani S, Landman J, Conradie M, Sundaram CP, Clayman RV. Ureteral access for upper urinary tract disease: the access sheath. J Endourol. 2001;15(8):831–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Pietrow PK, Auge BK, Delvecchio FC, et al. Techniques to maximize flexible ureteroscope longevity. Urology. 2002;60(5):784–8.PubMedCrossRefGoogle Scholar
  49. 49.
    De Sio M, Autorino R, Damiano R, Olivia A, Pane U, D’Armiento M. Expanding applications of the access sheath to ureterolithotripsy of distal ureteral stones. A frustrating experience. Urol Int. 2004;72 Suppl 1Suppl. 1:55–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Monga M, Gawlik A, Durfee W. Systematic evaluation of ureteral access sheaths. Urology. 2004;63(5):834–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Pedro RN, Hendlin K, Durfee WK, Monga M. Physical characteristics of next-generation ureteral access sheaths: buckling and kinking. Urology. 2007;70(3):440–2.PubMedCrossRefGoogle Scholar
  52. 52.
    Monga M, Best S, Venkatesh R, et al. Prospective randomized comparison of 2 ureteral access sheaths during flexible retrograde ureteroscopy. J Urol. 2004;172(2):572–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Hendlin K, Lund B, Dockendorf K, Ramani A, Monga M. Radial dilation of ureteral balloons: comparative in vitro analysis. J Endourol. 2005;19(5):575–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Marguet CG, Sung JC, Springhart WP, et al. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser. J Urol. 2005;173(5):1797–800.PubMedCrossRefGoogle Scholar
  55. 55.
    Teichman JM, Vassar GJ, Glickman RD. Holmium:yttrium-aluminum-garnet lithotripsy efficiency varies with stone composition. Urology. 1998;52(3):392–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Nazif OA, Teichman JM, Glickman RD, Welch AJ. Review of laser fibers: a practical guide for urologists. J Endourol. 2004;18(9):818–29.PubMedCrossRefGoogle Scholar
  57. 57.
    Calvano CJ, Moran ME, White MD, Borhan-Manesh A, Mehlhaff BA. Experimental utilization of the holmium laser in a model of ureteroscopic lithotripsy: energy analysis. J Endourol. 1999;13(2):113–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Kuo RL, Aslan P, Zhong P, Preminger GM. Impact of holmium laser settings and fiber diameter on stone fragmentation and endoscope deflection. J Endourol. 1998;12(6):523–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Poon M, Beaghler M, Baldwin D. Flexible endoscope deflectability: changes using a variety of working instruments and laser fibers. J Endourol. 1997;11(4):247–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Maislos SD, Volpe M, Albert PS, Raboy A. Efficacy of the stone cone for treatment of proximal ureteral stones. J Endourol. 2004;18(9):862–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang CJ, Huang SW, Chang CH. Randomized trial of NTrap for proximal ureteral stones. Urology. 2011;77(3):553–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Vejdani K, Eisner BH, Pengune W, Stoller ML. Effect of laser insult on devices used to prevent stone retropulsion during ureteroscopic lithotripsy. J Endourol. 2009;23(4):705–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Ahmed M, Pedro RN, Kieley S, Akornor JW, Durfee WK, Monga M. Systematic evaluation of ureteral occlusion devices: insertion, deployment, stone migration, and extraction. Urology. 2009;73(5):976–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Farahat YA, Elbahnasy AW, Elashry OM. A randomized prospective controlled study for assessment of different ureteral occlusion devices in prevention of stone migration during pneumatic lithotripsy. Urology. 2011;77(1):30–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Salimi N, Mahajan A, Don J, Schwartz B. A novel stone retrieval basket for more efficient lithotripsy procedures. J Med Eng Technol. 2009;33(2):142–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Zeltser IS, Bagley DH. Basket design as a factor in retention and release of calculi in vitro. J Endourol. 2007;21(3):337–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Lukasewycz S, Hoffman N, Botnaru A, Deka PM, Monga M. Comparison of tipless and helical baskets in an in vitro ureteral model. Urology. 2004;64(3):435–8. discussion 438.PubMedCrossRefGoogle Scholar
  68. 68.
    Kesler SS, Pierre SA, Brison DI, Preminger GM, Munver R. Use of the Escape nitinol stone retrieval basket facilitates fragmentation and extraction of ureteral and renal calculi: a pilot study. J Endourol. 2008;22(6):1213–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Korman E, Hendlin K, Monga M. Small-diameter nitinol stone baskets: radial dilation force and dynamics of opening. J Endourol. 2011;25(9):1537–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Smith AD. Smith’s textbook of endourology. 3rd ed. Oxford, UK: Wiley-Blackwell; 2011. p. 388–94.Google Scholar
  71. 71.
    Multescu DR, Mirciulescu V, Geavlete B, Geavlete P. C86 Digital semirigid ureteroscopy: a new standard in endoscopic imaging. Eur Urol. 2009;8:686.Google Scholar
  72. 72.
    Sung JC, Springhart WP, Marguet CG, et al. Location and etiology of flexible and semirigid ureteroscope damage. Urology. 2005;66(5):958–63.PubMedCrossRefGoogle Scholar
  73. 73.
    Bagley DH. Removal of upper urinary tract calculi with flexible ureteropyeloscopy. Urology. 1990;35(5):412–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Holden T, Pedro RN, Hendlin K, Durfee W, Monga M. Evidence-based instrumentation for flexible ureteroscopy: a review. J Endourol. 2008;22(7):1423–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Haberman K, Ortiz-Alvarado O, Chotikawanich E, Monga M. A dual-channel flexible ureteroscope: evaluation of deflection, flow, illumination, and optics. J Endourol. 2011;25(9):1411–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Semins MJ, George S, Allaf ME, Matlaga BR. Ureteroscope cleaning and sterilization by the urology operating room team: the effect on repair costs. J Endourol. 2009;23(6):903–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Monga M, Weiland D, Pedro RN, Lynch AC, Anderson K. Intrarenal manipulation of flexible ureteroscopes: a comparative study. BJU Int. 2007;100(1):157–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Paffen ML, Keizer JG, de Winter GV, Arends AJ, Hendrikx AJ. A comparison of the physical properties of four new generation flexible ureteroscopes: (de)flection, flow properties, torsion stiffness, and optical characteristics. J Endourol. 2008;22(10):2227–34.PubMedCrossRefGoogle Scholar
  79. 79.
    Multescu R, Geavlete B, Georgescu D, Geavlete P. Conventional fiberoptic flexible ureteroscope versus fourth generation digital flexible ureteroscope: a critical comparison. J Endourol. 2010;24(1):17–21.PubMedCrossRefGoogle Scholar
  80. 80.
    Zilberman DE, Lipkin ME, Ferrandino MN, et al. The digital flexible ureteroscope: in vitro assessment of optical characteristics. J Endourol. 2011;25(3):519–22.PubMedCrossRefGoogle Scholar
  81. 81.
    Bach T, Geavlete B, Herrmann TR, Gross AJ. Working tools in flexible ureterorenoscopy—influence on flow and deflection: what does matter? J Endourol. 2008;22(8):1639–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Hendlin K, Weiland D, Monga M. Impact of irrigation systems on stone migration. J Endourol. 2008;22(3):453–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Sprunger JK, Herrell III SD. Techniques of ureteroscopy. Urol Clin North Am. 2004;31(1):61–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Bhanot N, Sahud AG, Sepkowitz D. Best practice policy statement on urologic surgery antimicrobial prophylaxis. Urology. 2009;74(1):236–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Wolf Jr JS, Bennett CJ, Dmochowski RR, Hollenbeck BK, Pearle MS, Schaeffer AJ. Best practice policy statement on urologic surgery antimicrobial prophylaxis. J Urol. 2008;179(4):1379–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Knopf HJ, Graff HJ, Schulze H. Perioperative antibiotic prophylaxis in ureteroscopic stone removal. Eur Urol. 2003;44(1):115–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Christiano AP, Hollowell CM, Kim H, et al. Double-blind randomized comparison of single-dose ciprofloxacin versus intravenous cefazolin in patients undergoing outpatient endourologic surgery. Urology. 2000;55(2):182–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Meyer RS, White KK, Smith JM, Groppo ER, Mubarak SJ, Hargens AR. Intramuscular and blood pressures in legs positioned in the hemilithotomy position: clarification of risk factors for well-leg acute compartment syndrome. J Bone Joint Surg Am. 2002;84-A(10):1829–35.PubMedGoogle Scholar
  89. 89.
    Forrest JB, Clemens JQ, Finamore P, et al. AUA Best Practice Statement for the prevention of deep vein thrombosis in patients undergoing urologic surgery. J Urol. 2009;181(3):1170–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Elkoushy MA, Shahrour W, Andonian S. Pulsed fluoroscopy in ureteroscopy and percutaneous nephrolithotomy. Urology. 2012;79(6):1230–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Kipling M, Mohammed A, Medding RN. Guidewires in clinical practice: applications and troubleshooting. Expert Rev Med Devices. 2009;6(2):187–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Elashry OM, Elgamasy AK, Sabaa MA, et al. Ureteroscopic management of lower ureteric calculi: a 15-year single-centre experience. BJU Int. 2008;102(8):1010–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Borboroglu PG, Amling CL, Schenkman NS, et al. Ureteral stenting after ureteroscopy for distal ureteral calculi: a multi-institutional prospective randomized controlled study assessing pain, outcomes and complications. J Urol. 2001;166(5):1651–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Dickstein RJ, Kreshover JE, Babayan RK, Wang DS. Is a safety wire necessary during routine flexible ureteroscopy? J Endourol. 2010;24(10):1589–92.PubMedCrossRefGoogle Scholar
  95. 95.
    Ordon M, Schuler TD, Honey RJ. Ureteral avulsion during contemporary ureteroscopic stone management: “the scabbard avulsion”. J Endourol. 2011;25(8):1259–62.PubMedCrossRefGoogle Scholar
  96. 96.
    Kau EL, Ng CS, Fuchs GJ. Complications of ureteroscopic surgery. In: Taneja SS, editor. Complications of urologic surgery. 4th ed. Philadelphia, PA: Elsevier; 2010. p. 303–16.Google Scholar
  97. 97.
    Weedin JW, Coburn M, Link RE. The impact of proximal stone burden on the management of encrusted and retained ureteral stents. J Urol. 2011;185(2):542–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Krambeck AE, Walsh RS, Denstedt JD, et al. A novel drug eluting ureteral stent: a prospective, randomized, multicenter clinical trial to evaluate the safety and effectiveness of a ketorolac loaded ureteral stent. J Urol. 2010;183(3):1037–42.PubMedCrossRefGoogle Scholar
  99. 99.
    Gupta M, Patel T, Xavier K, et al. Prospective randomized evaluation of periureteral botulinum toxin type A injection for ureteral stent pain reduction. J Urol. 2010;183(2):598–602.PubMedCrossRefGoogle Scholar
  100. 100.
    Norris RD, Sur RL, Springhart WP, et al. A prospective, randomized, double-blinded placebo-controlled comparison of extended release oxybutynin versus phenazopyridine for the management of postoperative ureteral stent discomfort. Urology. 2008;71(5):792–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Adiyat KT, Meuleners R, Monga M. Selective postoperative imaging after ureteroscopy. Urology. 2009;73(3):490–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Weizer AZ, Auge BK, Silverstein AD, et al. Routine postoperative imaging is important after ureteroscopic stone manipulation. J Urol. 2002;168(1):46–50.PubMedCrossRefGoogle Scholar
  103. 103.
    Corcoran AT, Smaldone MC, Ricchiuti DD, Averch TD. Management of benign ureteral strictures in the endoscopic era. J Endourol. 2009;23(11):1909–12.PubMedCrossRefGoogle Scholar
  104. 104.
    Kozinn SI, Canes D, Sorcini A, Moinzadeh A. Robotic versus open distal ureteral reconstruction and reimplantation for benign stricture disease. J Endourol. 2012;26(2):147–51.PubMedCrossRefGoogle Scholar
  105. 105.
    Lopes Neto AC, Korkes F, Silva II JL, et al. Prospective randomized study of treatment of large proximal ureteral stones: extracorporeal shock wave lithotripsy versus ureterolithotripsy versus laparoscopy. J Urol. 2011;187(1):164–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of UrologyGlickman Urologic and Kidney Institute, The Cleveland ClinicClevelandUSA

Personalised recommendations