Advertisement

ESWL Principles

  • James Lingeman
  • Naeem BhojaniEmail author
Chapter

Abstract

The treatment of kidney stone disease has changed dramatically over the past 30 years. This change is due in large part to the arrival of extracorporeal shock wave lithotripsy (ESWL). ESWL along with the advances in ureteroscopic and percutaneous techniques has led to the virtual extinction of open surgical treatments for kidney stone disease. Much research has gone into understanding how ESWL can be made more efficient and safe. This chapter discusses the parameters that can be used to optimize ESWL outcomes as well as the concepts that are affecting the efficacy and efficiency of ESWL.

Keywords

Shock Wave Kidney Stone Extracorporeal Shock Wave Lithotripsy Cavitation Bubble Ureteral Stone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dretler SP. Stone fragility–a new therapeutic distinction. J Urol. 1988;139(5):1124–7.PubMedGoogle Scholar
  2. 2.
    Klee LW, Brito CG, Lingeman JE. The clinical implications of brushite calculi. J Urol. 1991;145(4):715–8.PubMedGoogle Scholar
  3. 3.
    Kim SC, Burns EK, Lingeman JE, Paterson RF, McAteer JA, Williams Jr JC. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res. 2007;35(6):319–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Lingeman J, Matlaga BR, Evan AP. Surgical management of upper urinary tract calculi. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell-walsh urology. Philadelphia, PA: Saunders; 2007. p. 1431–507.Google Scholar
  5. 5.
    Kaude JV, Williams CM, Millner MR, Scott KN, Finlayson B. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy. AJR Am J Roentgenol. 1985;145(2):305–13.PubMedCrossRefGoogle Scholar
  6. 6.
    McAteer JA, Evan AP. The acute and long-term adverse effects of shock wave lithotripsy. Semin Nephrol. 2008;28(2):200–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Neucks JS, Pishchalnikov YA, Zancanaro AJ, VonDerHaar JN, Williams Jr JC, McAteer JA. Improved acoustic coupling for shock wave lithotripsy. Urol Res. 2008;36(1):61–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Willis LR, Evan AP, Connors BA, et al. Shockwave lithotripsy: dose-related effects on renal structure, hemodynamics, and tubular function. J Endourol. 2005;19(1):90–101.PubMedCrossRefGoogle Scholar
  9. 9.
    Connors BA, Evan AP, Blomgren PM, et al. Reducing shock number dramatically decreases lesion size in a juvenile kidney model. J Endourol. 2006;20(9):607–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Connors BA, Evan AP, Willis LR, Blomgren PM, Lingeman JE, Fineberg NS. The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig. J Am Soc Nephrol. 2000;11(2):310–8.PubMedGoogle Scholar
  11. 11.
    Kerbl K, Rehman J, Landman J, Lee D, Sundaram C, Clayman RV. Current management of urolithiasis: progress or regress? J Endourol. 2002;16(5):281–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Evan AP, McAteer JA, Connors BA, et al. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int. 2008;101(3):382–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Cleveland RO, McAteer JA. The physics of shock wave lithotripsy. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JE, Preminger GM, Segura JW, editors. Smith’s Textbook on endourology. Hamilton, ON: BC Decker, Inc; 2007. p. 317–32.Google Scholar
  14. 14.
    Cleveland RO, Anglade R, Babayan RK. Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. J Endourol. 2004;18(7):629–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Köhrmann KU, Rassweiler JJ, Manning M, et al. The clinical introduction of a third generation lithotriptor: Modulith SL 20. J Urol. 1995;153(5):1379–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Ueda S, Matsuoka K, Yamashita T, Kunimi H, Noda S, Eto K. Perirenal hematomas caused by SWL with EDAP LT-01 lithotripter. J Endourol. 1993;7(1):11–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Pishchalnikov YA, Neucks JS, VonDerHaar RJ, Pishchalnikova IV, Williams Jr JC, McAteer JA. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol. 2006;176(6 Pt 1):2706–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Jain A, Shah TK. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol. 2007;51(6):1680–7. discussion 1686–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Bergsdorf T, Chaussy C, Türoff S. Energy coupling in extracorporeal shock wave lithotripsy-the impact of coupling quality on disintegration efficacy. J Endourol. 2008;22(Suppl):A161.Google Scholar
  20. 20.
    Bierkens AF, Hendrikx AJ, de Kort VJ, et al. Efficacy of second generation lithotriptors: a multicenter comparative study of 2,206 extracorporeal shock wave lithotripsy treatments with the Siemens Lithostar, Dornier HM4, Wolf Piezolith 2300, Direx Tripter X-1 and Breakstone lithotriptors. J Urol. 1992;148(3 Pt 2):1052–6. discussion 1056–7.PubMedGoogle Scholar
  21. 21.
    Lingeman JE. Extracorporeal shock wave lithotripsy. Development, instrumentation, and current status. Urol Clin North Am. 1997;24(1):185–211.PubMedCrossRefGoogle Scholar
  22. 22.
    Rassweiler JJ, Knoll T, Köhrmann KU, et al. Shock wave technology and application: an update. Eur Urol. 2011;59(5):784–96.PubMedCrossRefGoogle Scholar
  23. 23.
    Pace KT, Ghiculete D, Harju M, Honey RJ. University of Toronto Lithotripsy Associates. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol. 2005;174(2):595–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Madbouly K, El-Tiraifi AM, Seida M, El-Faqih SR, Atassi R, Talic RF. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol. 2005;173(1):127–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Yilmaz E, Batislam E, Basar M, Tuglu D, Mert C, Basar H. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology. 2005;66(6):1160–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Chacko J, Moore M, Sankey N, Chandhoke PS. Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J Urol. 2006;175(4):1370–3. discussion 1373–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Eisenmenger W, Du XX, Tang C, et al. The first clinical results of “wide-focus and low-pressure” ESWL. Ultrasound Med Biol. 2002;28(6):769–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol. 2008;179(1):194–7. discussion 197.PubMedCrossRefGoogle Scholar
  29. 29.
    Pishchalnikov YA, McAteer JA, Williams Jr JC. Effect of firing rate on the performance of shock wave lithotriptors. BJU Int. 2008;102(11):1681–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of UrologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations