Skip to main content

Advanced Diagnostic Tools

  • Chapter
  • First Online:
Chlorinated Solvent Source Zone Remediation

Abstract

In the past decade, the advent of innovative diagnostic tools has improved site assessment and remediation practices. This chapter discusses five diagnostic tools that are particularly important for chlorinated solvent source zone remediation: multi-level monitoring systems; rock matrix characterization techniques; mass flux/mass discharge measurements; compound-specific isotope analysis; and molecular biological tools. The discussion includes descriptions of each diagnostic tool, a value of information analysis to help practitioners determine when the tools will be useful and cost effective, and practical recommendations for use of each tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  • Abe Y, Aravena R, Zopfi J, Shoukar-Stash O, Cox E, Roberts JD, Hunkeler D. 2009. Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene. Environ Sci Technol 43:101–107.

    Article  CAS  Google Scholar 

  • Ahad J, Slater G. 2008. Differentiating biotic from abiotic (Fenton’s reaction) degradation of toluene: A test of compound-specific stable carbon isotopes. Sci Total Environ 401:194–198.

    Article  CAS  Google Scholar 

  • Annable MD, Hatfield K, Cho J, Klammler H, Parker BL, Cherry JA, Rao PSC. 2005. Field-scale evaluation of the passive flux meter for simultaneous measurement of groundwater and contaminant fluxes. Environ Sci Technol 39:7194–7201.

    Article  CAS  Google Scholar 

  • Back PE, RosĂ©n L, Norberg T. 2007. Value of information analysis in remedial investigations. Ambio 36:486–493.

    Article  CAS  Google Scholar 

  • Bauer S, Bayer-Raich M, Holder T, Kolesar C, Muller D, Ptak T. 2004. Quantification of groundwater contamination in an urban area using integral pumping tests. J Contam Hydrol 75:183–213.

    Article  CAS  Google Scholar 

  • Bayer-Raich M, Jarsjo J, Liedl R, Ptak T, Teutsch G. 2004. Average contaminant concentration and mass flux in aquifers from time-dependent pumping well data - Analytical framework. Water Resour Res 40:W08303.

    Google Scholar 

  • Black WH, Smith HR, Patton FD. 1986. Multiple-level ground water monitoring with the MP system. Proceedings of the National Water Well Association’s Conference on Surface and Borehole Geophysical Methods and Ground Water Instrumentation. Denver, CO, USA, October 15–17, pp 41–61.

    Google Scholar 

  • Bockelmann A, Ptak T, Teutsch G. 2001. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site. J Contam Hydrol 53:429–153.

    Article  CAS  Google Scholar 

  • Bockelmann A, Zamfirescu D, Ptak T, Grathwohl P, Teutsch G. 2003. Quantification of mass fluxes and natural attenuation rates at an industrial site with a limited monitoring network: A case study. J Contam Hydrol 60:97–121.

    Article  CAS  Google Scholar 

  • Brooks MC, Wood LA, Annable MD, Hatfield K, Cho J, Holbert C, Rao PSC, Enfield CG, Lynch K, Smith RE. 2008. Changes in contaminant mass discharge from DNAPL source mass depletion: Evaluation at two field sites. J Contam Hydrol 102:140–153.

    Article  CAS  Google Scholar 

  • Buscheck TE. 2002. Mass Flux Estimates to Assist Decision-Making. Technical Bulletin. ChevronTexaco, Houston, TX, USA.

    Google Scholar 

  • Campbell T, Hatfield K, Klammler H, Annable MD, Rao PS. 2006. Magnitude and directional measures of water and Cr(VI) fluxes by passive flux meter. Environ Sci Technol 40:6392–6397.

    Article  CAS  Google Scholar 

  • Cardiff M, Liu X, Kitanidis PK, Parker J, Kim U. 2010. Cost optimization of DNAPL source and plume remediation under uncertainty using a semi-analytic model. J Contam Hydrol 113:25–43.

    Article  CAS  Google Scholar 

  • Cherry JA, Johnson PE. 1982. A multi-level device for monitoring in fractured rock. Ground Water Monit Rev 2:41–44.

    Article  Google Scholar 

  • Cherry JA, Parker BL, Keller C. 2007. A new depth discrete multilevel monitoring approach for fractured rock. Ground Water Monit Remediat 27:57–70.

    Article  Google Scholar 

  • de Jonge H, Rothenberg G. 2006. New device and method for flux-proportional sampling of mobile solutes in soil and groundwater. Environ Sci Technol 39:274–282.

    Article  CAS  Google Scholar 

  • Einarson M. 2006. Multi-level Groundwater Monitoring. In DM Nielsen, ed, Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring, 2nd ed. CRC Press, Boca Raton, FL, USA, pp 808–845.

    Google Scholar 

  • Einarson MD, Cherry JA. 2002. A new multi-level ground-water monitoring system utilizing multichannel tubing. Ground Water Monit Remediat 22:52–65.

    Article  CAS  Google Scholar 

  • Einarson MD, Mackay DM. 2001. Predicting impacts of ground water contamination. Environ Sci Technol 35:66A–73A.

    Article  CAS  Google Scholar 

  • Farhat SK, Newell CJ, Nichols EM. 2005. Mass Flux Toolkit. Groundwater Services, Houston, TX, USA. http://www.gsi-net.com/en/software/free-software/mass-flux-toolkit.html. Accessed February 26, 2013.

  • Feenstra S, Cherry J, Parker B. 1996. Conceptual Models for the Behavior of DNAPLs in the Subsurface. In Pankow J, Cherry J, eds, Dense Chlorinated Solvents and Other DNAPLs in Groundwater: History, Behavior and Remediation. Waterloo Press, Waterloo, ON, Canada, pp 53–88.

    Google Scholar 

  • Freeze RA, Bruce J, Massman, J, Sperling T, Smith L. 1992. Hydrogeological decision analysis: 4. The concept of data worth and its use in the development of site investigation strategies. Ground Water 30:574–588.

    Article  CAS  Google Scholar 

  • Goltz MN, Close ME, Yoon H, Huang J, Flintoft MJ, Kim S, Enfield C. 2009. Validation of two innovative methods to measure contaminant mass flux in groundwater. J Contam Hydrol 106:51–61.

    Article  CAS  Google Scholar 

  • Guilbeault MA, Parker BL, Cherry JA. 2005. Mass and flux distributions from DNAPL zones in sandy aquifers. Ground Water 43:70–86.

    Article  CAS  Google Scholar 

  • Hatfield K, Annable MD, Kuhn S, Rao PS, Campbell T. 2002. A new method for quantifying contaminant flux at hazardous waste sites. In Thornton SF, Oswald SE, eds, Groundwater Quality: Natural and Enhanced Restoration of Groundwater Pollution. Internat Assoc Hydrological Sci Pub. No. 275, pp 25–32.

    Google Scholar 

  • Hatfield K, Annable M, Cho JH, Rao PSC, Klammler H. 2004. A direct passive method for measuring water and contaminant fluxes in porous media. J Contam Hydrol 75:155–181.

    Article  CAS  Google Scholar 

  • Howard MH, Clingenpeel SR, Leiser OP, Rothermell JS, Watwood ME. 2005. Molecular and physiological characterization of aerobic TCE degradation potential. Proceedings, 8th In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA, Paper No. G-31.

    Google Scholar 

  • Huang J, Close ME, Pang L, Goltz MN. 2004. Innovative method to measure flux of dissolved contaminants in groundwater. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterey, CA, USA, May 24–27. Battelle Press. Abstract No. 1D-08.

    Google Scholar 

  • Hunkeler D, Aravena R, Parker BL, Cherry JA, Diao X. 2003. Monitoring oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes: Laboratory and field studies. Environ Sci Technol 37:798–804.

    Article  CAS  Google Scholar 

  • Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL. 2004. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. J Contam Hydrol 74:265–282.

    Article  CAS  Google Scholar 

  • Hurley JC, Parker BL. 2002. Rock core investigation of DNAPL penetration and TCE mobility in fractured sandstone. In Stolle D, Piggott AR, Crowder JJ, eds, Proceedings of the 55th Canadian Geotechnical and 3rd Joint IAH-CNC and CGS Groundwater Specialty Conferences, Ground and Water: Theory to Practice. Canadian Geotechnical Society. Niagara Falls, Ontario, Canada, October 20–23, 2001, pp 473–480.

    Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council). 2004. Strategies for Monitoring the Performance of DNAPL Source Zone Remedies. http://www.itrcweb.org/Documents/DNAPLs-5.pdf. Accessed February 26, 2013.

  • ITRC. 2010a. ITRC Technical Project Teams. http://www.itrcweb.org/Documents/2010TeamDescriptions.pdf. Accessed February 26, 2013.

  • ITRC. 2010b. Use and Measurement of Mass Flux and Mass Discharge. Int-DNAPL-1. www.itrcweb.org/Guidance/GetDocument?documentID=49. Accessed February 26, 2013.

  • ITRC. 2011. Environmental Molecular Diagnostics Fact Sheets. EMD-1. Washington, DC: Interstate Technology & Regulatory Council, Environmental Molecular Diagnostics Team. www.itrcweb.org/GuidanceDocuments/EMD1.pdf . Accessed February 26, 2013.

  • James BR, Freeze RA. 1993. The worth of data in predicting aquitard continuity in hydrogeological design. Water Resour Res 29:2049–2065.

    Article  CAS  Google Scholar 

  • James BR, Gorelick SM. 1994. When enough is enough: The worth of monitoring data in aquifer remediation design. Water Resour Res 30:3499–3513.

    Article  CAS  Google Scholar 

  • Kavanaugh M, Kresic N. 2008. Large Urban Groundwater Basins: Water Quality Threats and Aquifer Restoration. In Dimkic M, Brauch HJ, Kavanaugh M, eds, Groundwater Management in Large River Basins. IWA Publishing, London, UK, pp 520–600.

    Google Scholar 

  • Kubert M, Finkel M. 2006. Contaminant mass discharge estimation in groundwater based on multi-level point measurements: A numerical evaluation of expected errors. J Contam Hydrol 84:55–80.

    Article  CAS  Google Scholar 

  • Lebron CA, Phelan D, Heron G, Lachance J, Nielsen SG, Kueper BH, Rodriguez D, Wemp A, Baston D, Lacombe P, Chapelle FH. 2012. Dense Non Aqueous Phase Liquid (DNAPL) Removal from Fractured Rock Using Thermal Conductive Heating (TCH). Final Report ESTCP Project ER-200715. Prepared for ESTCP, Arlington, VA, USA.

    Google Scholar 

  • Liang X, Dong Y, Kuder T, Krumholz LR, Philp RP, Butler EC. 2007. Distinguishing abiotic and biotic transformation of tetrachloroethylene and trichloroethylene by stable carbon isotope fractionation. Environ Sci Technol 41:7094–7100.

    Article  CAS  Google Scholar 

  • Lollar BS, Slater GF, Sleep B, Witt M, Klecka GM, Harkness M, Spivack J. 2001. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at Area 6, Dover Air Force Base. Environ Sci Technol 35:261–269.

    Article  CAS  Google Scholar 

  • Lu X, Wilson JT, Kampbell DH. 2006. Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140.

    Article  CAS  Google Scholar 

  • Malcolm Pirnie, Inc. 2011a. Guidance Report: Diagnostic Tools for Performance Evaluation of Innovative In Situ Remediation Technologies at Chlorinated Solvent-Contaminated Sites. ESTCP Project Number ER-200318. Prepared for ESTCP, Arlington, VA, USA.

    Google Scholar 

  • Malcolm Pirnie, Inc. 2011b. Final Report: Vandenberg Air Force Base, Diagnostic Tools for Performance Evaluation of Innovative In Situ Remediation Technologies at Chlorinated Solvent-Contaminated Sites. ESTCP Project Number ER-200318. Prepared for ESTCP, Arlington, VA, USA.

    Google Scholar 

  • Malcolm Pirnie, Inc. 2011c. Final Report: Fort Lewis, Diagnostic Tools for Performance Evaluation of Innovative In Situ Remediation Technologies at Chlorinated Solvent-Contaminated Sites. ESTCP Project Number ER-200318. Prepared for ESTCP, Arlington, Alexandria, VA, USA.

    Google Scholar 

  • Malcolm Pirnie, Inc. 2011d. Final Report: Watervliet Arsenal, Diagnostic Tools for Performance Evaluation of Innovative In Situ Remediation Technologies at Chlorinated Solvent-Contaminated Sites. ESTCP Project Number ER-200318. Prepared for ESTCP, Arlington, Alexandria, VA, USA.

    Google Scholar 

  • Marchesi M, Aravena R, Otero N, Soler A, Gil I, Sra KS, Thomson NR, Mancini S. 2009. Assessment of in-situ chemical oxidation (ISCO) performance for chlorinated solvents contaminated groundwater using stable carbon isotope at laboratory and field scale. Geophysical Research Abstracts 11. EGU2009-10201-1. http://adsabs.harvard.edu/abs/2009EGUGA..1110201M. Accessed February 26, 2013.

    Google Scholar 

  • Massman J, Freeze RA. 1987. Groundwater contamination from waste management sites – the interaction between risk-based engineering design and regulatory policy. Water Resour 23:368–380.

    Article  Google Scholar 

  • Meyer JR, Parker, BL, Cherry JA. 2008. Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. Environ Geol 56:27–44.

    Article  Google Scholar 

  • Morrill PL, Lacrampe-Couloume G, Slater GF, Sleep BE, Edwards EA, McMaster ML, Major DW, Sherwood Lollar B. 2005. Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. J Contam Hydrol 76:279–293.

    Article  CAS  Google Scholar 

  • Newell CJ, Farhat SK, Adamson DT, Looney BB. 2011. Contaminant plume classification system based on mass discharge. Ground Water 49:914–919.

    Article  CAS  Google Scholar 

  • NRC (National Research Council). 2005. Contaminants in the Subsurface: Source Zone Assessment and Remediation. National Academy Press, Washington, DC, USA.

    Google Scholar 

  • Parker BL. 2007. Investigating contaminated sites on fractured rock using the DFN approach. Proceedings of the 2007 USEPA/NGWA Fractured Rock Conference: State of the Science and Measuring Success in Remediation. Portland, ME, USA, September 24–26, pp 150–168.

    Google Scholar 

  • Parker BL, Cherry JA, Swanson BJ. 2006. A multilevel system for high-resolution monitoring in rotasonic boreholes. Ground Water Monit Remediat 26:57–73.

    Article  CAS  Google Scholar 

  • Payne FC, Quinnan JA, Potter ST. 2008. Remediation Hydraulics. CRC Press, Boca Raton, FL, USA.

    Book  Google Scholar 

  • Poulson SR, Naraoka H. 2002. Carbon isotope fractionation during permanganate oxidation of chlorinated ethylenes (cDCE, TCE, PCE). Environ Sci Technol 36:3270–3274.

    Article  CAS  Google Scholar 

  • Price M, Williams AT. 1993. The influence of unlined boreholes on groundwater chemistry: A comparative study using pore-water extraction and packer sampling. J Instit Water Environ Manage 7:651–659.

    Article  CAS  Google Scholar 

  • Rao PSC, Jawitz JW, Enfield CG, Falta RW, Annable MD, Wood AL. 2001. Technology integration for contaminated site remediation: Clean-up goals and performance criteria. In Thornton SF, Oswald SE, eds, Groundwater Quality: Natural and Enhanced Restoration of Groundwater Pollution. Internat Assoc Hydrological Sci Pub. No. 275, pp 571–578.

    Google Scholar 

  • Reichard EG, Evans JS. 1989. Assessing the value of hydrogeologic information for risk-based remedial action decisions. Water Resour Res 25:1451–1460.

    Article  CAS  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774.

    Article  CAS  Google Scholar 

  • Rodriquez DJ. 2012. Assessment of Thermal Heating for the Removal of Chlorinated Solvents from Fractured Bedrock. PhD Thesis. Queens University, Kingston, Ontario, Canada. http://hdl.handle.net/1974/7515. Accessed February 26,2013 .

    Google Scholar 

  • Russell KT, Rabideau AJ. 2000. Decision analysis for pump-and-treat design. Ground Water Monit Remediat 20:159–168.

    Article  Google Scholar 

  • Sale T, Newell C, Stroo H, Hinchee R, Johnson P. 2008. Frequently Asked Questions Regarding Management of Chlorinated Solvents in Soils and Groundwater. ESTCP. Project ER-0530. Prepared for ESTCP, Arlington, VA, USA. http://www.estcp.org/Technology/upload/ER-0530-FAQ.pdf. Accessed February 28, 2013.

  • SERDP (Strategic Environmental Research & Development Program). 2004. Annual Report: DNAPL Source Zone Initiative. ESTCP, Arlington, VA, USA.

    Google Scholar 

  • SERDP. 2005. Expert Panel Workshop Report: Research and Development Needs for the Environmental Remediation Application of Molecular Biological Tools. Retrieved from http://www.clu-in.org/products/tins/tinsone.cfm?num=68982420. Accessed February 28, 2013.

  • SERDP. 2006. Expert Panel Workshop Report: Reducing the Uncertainty of DNAPL Source Zone Remediation. ESTCP, Arlington, VA, USA.

    Google Scholar 

  • Slater GF, Sherwood-Lollar B, Sleep BE, Edwards EA. 2001. Variability in carbon isotopic fractionation during biodegradation: Implications for field applications. Environ Sci Technol 35:901–907.

    Article  CAS  Google Scholar 

  • Sterling SN, Parker BL, Cherry JA, Williams JH, Lane Jr JW, Haeni FP. 2005. Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone. Ground Water 43:557–573.

    Article  CAS  Google Scholar 

  • Stroo HF, Leeson A, Shepard AJ, Koenigsberg SS, Casey CC. 2006. Monitored natural attenuation forum: Environmental remediation applications of molecular biological tools. Remediat J 16:125–137.

    Article  Google Scholar 

  • Sueker JK. 2001. Isotope applications in environmental investigations: Theory and use in chlorinated solvent and petroleum hydrocarbon studies. Remediat J 12:5–24.

    Article  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Final OSWER Directive. EPA/540/R-99/009. USEPA, Washington, DC, USA. http://www.epa.gov/swerust1/directiv/d9200417.pdf. Accessed July 22, 2013.

  • USEPA. 2003. The DNAPL Remediation Challenge: Is There a Case for Source Depletion. EPA/600/R-03/143. http://www.clu-in.org/download/remed/600r03143.pdf. Accessed July 22, 2013.

  • USEPA. 2008. A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants using Compound Specific Isotope Analysis (CSIA). EPA 600/R-08/148. http://www.epa.gov/nrmrl/pubs/600r08148.html Accessed May 9, 2013.

  • USEPA. 2009. Amendment to the Record of Decision for the Commencement Bay – South Tacoma Channel Superfund Site, Operable Unit 1, Well 12A, Tacoma, Washington. USEPA Region 10, Seattle, WA, USA.

    Google Scholar 

  • van Dijk G. 2005. Bentonite usage hits new ground. GeoDrilling International, November, pp 36–39.

    Google Scholar 

  • Yokota F, Thompson K. 2004. Value of information literature analysis: A review of applications in health risk assessment. Med Decision Making 24:287–298.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The work summarized in this chapter was funded by ESTCP under project ER-0318. The authors would like to acknowledge project team members for their significant contribution to the project’s success. These include, in alphabetical order, Lisa Alvarez-Cohen (University of California, Berkeley), Michael Annable (University of Florida), John Cherry (University of Guelph), Murray Einarson (Haley and Aldrich), Ken Goldstein (The Louis Berger Group), Mark Goltz (Air Force Institute of Technology), Kirk Hatfield (University of Florida), Douglas Mackay (University of California, Davis), Tamzen Macbeth (CDM Smith), Daria Navon (ARCADIS), Beth Parker (University of Guelph), Suresh Rao (Purdue University), Kent Sorenson (CDM Smith) and Andrew Vitolins (ARCADIS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deeb, R.A., Nyman, J.L., Hawley, E.L., Kavanaugh, M.C., O’Laskey, R.H. (2014). Advanced Diagnostic Tools. In: Kueper, B., Stroo, H., Vogel, C., Ward, C. (eds) Chlorinated Solvent Source Zone Remediation. SERDP ESTCP Environmental Remediation Technology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6922-3_4

Download citation

Publish with us

Policies and ethics