IN SITU Bioremediation Of Chlorinated Ethene Source Zones

  • Hans F. Stroo
  • Michael R. West
  • Bernard H. Kueper
  • Robert C. Borden
  • David W. Major
  • C. Herb Ward
Part of the SERDP ESTCP Environmental Remediation Technology book series (SERDP/ESTCP, volume 7)


In situ bioremediation (ISB) was not initially considered a feasible technology for treating chlorinated solvent source zones, and it still faces some skepticism. However, experience over the last decade demonstrates that it is a viable technology for treating some source zones, although realistic objectives must be set. It is reasonable to expect 90-99% reductions in groundwater concentrations and mass discharge from a source in many situations, but it is not likely that ISB can achieve complete cleanup of a source zone within a few years. ISB is best applied in stages, optimizing the design and operations over time. Some residual contamination will remain, and modeling suggests that contaminant concentrations may rebound after treatment, although no rebound has been observed so far at field sites, and it is likely that the accumulation of bacterial biomass and reduced minerals during ISB will sustain treatment for several years after active treatment ends. Practitioners considering ISB for a source zone should be aware of several potential difficulties. The electron donor demand can be so great that it is not feasible to supply enough donor and/or pH buffer, or adding large amounts of donor may cause other problems such as methane production, biofouling of wells or clogging of the subsurface. Using ISB to treat source zones requires careful design, monitoring and continuous optimization throughout treatment, and likely will require extended passive management after treatment.


Electron Donor Vinyl Chloride Source Zone Reductive Dechlorination Daughter Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acar Y, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R. 1995. Electrokinetic remediation: Basics and technology status. J Hazard Mater 40:117–137.Google Scholar
  2. Adamson DT, Newell CJ. 2009. Support of source zone bioremediation through endogenous biomass decay and electron donor recycling. Bioremediaton J 13:29–40.Google Scholar
  3. Adamson DT, McDade JM, Hughes JB. 2003. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37:2525–2533.Google Scholar
  4. Adamson DT, McGuire TM, Newell CJ, Stroo H. 2011. Sustained treatment: Implications for treatment timescales associated with source depletion technologies. Remediat J 2:27–50.Google Scholar
  5. Aeppli C, Hofstetter TB, Amaral HIF, Kipfer R, Schwarzenbach RP, Berg M. 2010. Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances. Environ Sci Technol 44:3705–3711.Google Scholar
  6. AFCEE. 2007. Protocol for In Situ Bioremediation of Chlorinated Solvents Using Edible Oil. Prepared by Solutions-IES, Inc., Terra Systems, Inc., and Parsons Corp. Accessed September 14, 2013.
  7. AFCEE (Air Force Center for Engineering and the Environment), NFESC (Naval Facilities Engineering Service Center), ESTCP (Environmental Security Technology Certification Program). 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. Prepared by Parsons Infrastructure & Technology Group, Inc., Denver, CO, USA. Accessed September 14, 2013.
  8. Amos BK, Christ JA, Abriola LM, Pennell KD, Löffler FE. 2007a. Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution. Environ Sci Technol 41:963–970.Google Scholar
  9. Amos BK, Daprato RC, Hughes JB, Pennell KD, Löffler FE. 2007b. Effects of the nonionic surfactant Tween 80 on microbial reductive dechlorination of chlorinated ethenes. Environ Sci Technol 41:1710–1716.Google Scholar
  10. Amos BK, Suchomel EJ, Pennell KD, Löffler FE. 2008. Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone. Water Res 42:2963–2974.Google Scholar
  11. Bagley DM. 1998. Systematic approach for modeling tetrachloroethene biodegradation. J Environ Eng 124:1076–1086.Google Scholar
  12. Baston DP, Falta RW, Kueper BH. 2010. Numerical modeling of thermal conductive heating in fractured bedrock. Ground Water 48:836–843.Google Scholar
  13. Basu NB, Rao PSC, Falta RW, Annable MD, Jawitz JW, Hatfield K. 2008. Temporal evolution of DNAPL source and contaminant flux distribution: Impacts of source mass depletion. J Contam Hydrol 95:93–109.Google Scholar
  14. Battelle. 2004. Demonstration of Biodegradation of Dense, Nonaqueous-phase Liquids (DNAPL) Through Biostimulation and Bioaugmentation at Launch Complex 34 in Cape Canaveral Air Force Station, Florida. Final Report. EPA/540/R-07/007. U.S. Environmental Protection Agency National Risk Management Research Laboratory Superfund Innovative Technology Evaluation Program, Cincinnati, OH, USA. Accessed September 14, 2013.
  15. Becker J. 2006. A modeling study and implications of competition between Dehalococcoides ethenogenes and other tetrachloroethene-respiring bacteria. Environ Sci Technol 40:4473–4480.Google Scholar
  16. Becvar E, Evans P, Lebrón C, Stroo H, Wilson J, Wymore R. 2008. Workshop on In Situ Biogeochemical Transformation of Chlorinated Solvents. Prepared for AFCEE, Brooks City-Base, TX; ESTCP, Arlington, VA; NFESC, Port Hueneme, CA. February 2008. Accessed September 14, 2013.
  17. Borden RC. 2003. Anaerobic bioremediation of chlorinated solvent source areas – What can be achieved? AFCEE Annual Technology Transfer Workshop, San Antonio, TX, USA.Google Scholar
  18. Borden RC, Beckwith WJ, Lieberman MT, Akladiss N, Hill SR. 2007. Enhanced anaerobic bioremediation of a TCE source at the Tarheel Army Missile Plant using EOS. Remediat J 17:12–19.Google Scholar
  19. Borden RC, Clayton M, Weispfenning AM, Simpkin T, Lieberman MT. 2008. Guidance Document: Development of a Design Tool for Planning Aqueous Amendment Injections. ESTCP, Arlington, VA, USA. Project ER-200626. Accessed September 14, 2013.
  20. Bouwer EJ, McCarty PL. 1983. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45:1286–1294.Google Scholar
  21. Bradley PM. 2003. History and ecology of chloroethene biodegradation: A review. Bioremediation J 7:81–109.Google Scholar
  22. Bradley PM, Chapelle FH. 1996. Anaerobic mineralization of vinyl chloride in Fe(III)-reducing aquifer sediments. Environ Sci Technol 30:2084–2086.Google Scholar
  23. Bradley PM, Chapelle FH. 2010. Biodegradation of Chlorinated Ethenes. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 39–67.Google Scholar
  24. Bradley PM, Chapelle FH. 2011. Microbial mineralization of dichloroethene and vinyl chloride under hypoxic conditions. Ground Water Monit Remediat 31:39–49.Google Scholar
  25. Bradley PM, Landmeyer JE, Dinicola RS. 1998. Anaerobic oxidation of [1,2-14C] dichloroethene under Mn(IV)-reducing conditions. Appl Environ Microbiol 64:1560–1562.Google Scholar
  26. Brown RA, Mueller JG, Seech AG, Henderson JK, Wilson JT. 2009. Interactions between biological and abiotic pathways in the reduction of chlorinated solvents. Remediat J 20:9–20.Google Scholar
  27. Burnell DK, Mercer JW, Sims LS. 2012. Analytical models of steady-state plumes undergoing sequential first-order degradation. Ground Water 50:394–411.Google Scholar
  28. Butler EC, Hayes KF. 1999. Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33:2021–2027.Google Scholar
  29. Cai Z, Wilson RD, Lerner DN. 2012. Assessing TCE source bioremediation by geostatistical analysis of a flux fence. Ground Water 50:908–917.Google Scholar
  30. Cápiro N, Granbery EK, Lebrón CA, Major DW, McMaster ML, Pound MJ, Löffler FE, Pennell KD. 2011. Liquid-liquid mass transfer of partitioning electron donors in chlorinated solvent source zones. Environ Sci Technol 45:1547–1554.Google Scholar
  31. Carr CS, Garg S, Hughes JB. 2000. Effect of dechlorinating bacteria on the longevity and composition of PCE-containing nonaqueous phase liquids under equilibrium dissolution conditions. Environ Sci Technol 34:1088–1094.Google Scholar
  32. Chapman SW, Parker BL. 2005. Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resour Res 41:W12411, doi: 10.1029/2005WR004224.Google Scholar
  33. Chen F, Liu X, Falta RW, Murdoch LC. 2010. Experimental demonstration of contaminant removal from fractured rock by boiling. Environ Sci Technol 44:6437–6442.Google Scholar
  34. Christ JA, Abriola LM. 2007. Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones. Adv Water Resour 30:1547–1561.Google Scholar
  35. Christ JA, Ramsburg CA, Löffler FE, Pennell KD, Abriola LM. 2005. Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones – A review and assessment. Environ Health Perspect 113:465–477.Google Scholar
  36. Chu M, Kitanidis PK, McCarty PL. 2003. Effects of biomass accumulation on microbially enhanced dissolution of a PCE pool: A numerical simulation. J Contam Hydrol 65:79–100.Google Scholar
  37. Clement TP. 1997. RT3D – A Modular Computer Code for Simulating Reactive Multispecies Transport in 3-Dimensional Groundwater Systems (Version 1.0). PNNL-11720. Pacific Northwest National Laboratory, Richland, WA, USA. 59 p.Google Scholar
  38. Clement TP. 2003. RT3D v2.5 Update document, February. Battelle Pacific Northwest Division, Columbus, OH, USA. Accessed September 14, 2013.
  39. Clement TP, Hooker BS, Skeen RS. 1996. Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth. Ground Water 34:934–942.Google Scholar
  40. Clement TP, Sun Y, Hooker BS, Petersen JN. 1998. Modeling multispecies reactive transport in ground water. Ground Water Monit Remediat 18:79–92.Google Scholar
  41. Coleman NV, Mattes TM, Gossett JM, Spain JC. 2002. Biodegradation of cis-dichloroethene as the sole carbon source by a β-protobacterium. Appl Environ Microbiol 68:2726–2730.Google Scholar
  42. Cope N, Hughes JB. 2001. Biologically-enhanced removal of PCE from NAPL source zones. Environ Sci Technol 35:2014–2021.Google Scholar
  43. Costanza J, Fletcher KE, Löffler FE, Pennell KD. 2009. Fate of TCE in heated Fort Lewis soil. Environ Sci Technol 43:909–914.Google Scholar
  44. Criddle CS, Alvarez LM, McCarty PM. 1991. Microbial Processes in Porous Media. In Bear J, Corapcioglu MY, eds, Transport Processes in Porous Media. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 641–691.Google Scholar
  45. Cupples AM. 2008. Real-time PCR quantification of Dehalococcoides populations: Methods and applications. J Microbiol Methods 72:1–11.Google Scholar
  46. Cupples AM, Spormann AM, McCarty PL. 2004. Vinyl chloride and cis-dichloroethene dechlorination kinetics and microorganism growth under substrate limiting conditions. Environ Sci Technol 38:1102–1107.Google Scholar
  47. Cwiertny DM, Scherer MM. 2010. Abiotic Processes Affecting the Remediation of Chlroinated Solvents. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 69–108.Google Scholar
  48. Da Silva MLB, Daprato RC, Gomez DE, Hughes JB, Ward CH, Alvarez PJJ. 2006. Comparison of bioaugmentation and biostimulation for the enhancement of DNAPL source zone bioremediation. Water Environ Res 78:2456–2465.Google Scholar
  49. De Flaun MF, Drew S, Dale J, Lacombe P, Schauble P. 2006. Application of bioaugmentation for TCE DNAPL in fractured bedrock. In Sass BM, ed, Proceedings, 5th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA. May 22–25. Battelle Press, Columbus, OH, USA. Paper E-21.Google Scholar
  50. Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA. 2002. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36:4093–4202.Google Scholar
  51. Duhamel M, Mo K, Edwards E. 2004. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545.Google Scholar
  52. Eaddy A. 2008. Scale-up and characterization of an enrichment culture for bioaugmentation of the P-area chlorinated ethene plume at the Savannah River site. MS Thesis. Clemson University, Clemson, SC, USA.Google Scholar
  53. Ellis DE, Lutz EJ, Odom JM, Buchanan Jr RL, Bartlett CL, Lee MD, Harkness MR, Deweerd KA. 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260.Google Scholar
  54. Elsner M, Schwarzenbach RP, Haderlein SB. 2004. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environ Sci Technol 38:799–807.Google Scholar
  55. ESTCP (Environmental Security Technology Certification Program). 2005. Bioaugmentation for Remediation of Chlorinated Solvents: Technology Development, Status, and Research Needs. ESTCP, Arlington, VA, USA. Accessed September 14, 2013.
  56. ESTCP. 2006. Protocol for Enhanced In Situ Bioremediation Using Emulsified Edible Oil. Project ER-200221. ESTCP, Arlington, VA, USA. Prepared by Solutions-IES. Accessed September 14, 2013.
  57. Falta RW, Stacy MB, Ahsanuzzaman ANM, Wang M, Earle R. 2005. REMChlor Remediation Evaluation Model for Chlorinated Solvents User’s Manual Version 1.0. Accessed September 14, 2013.
  58. Fathepure BZ, Nengu JP, Boyd SA. 1987. Anaerobic bacteria that degrade perchlorothene. Appl Environ Microbiol 53:2671–2674.Google Scholar
  59. Feenstra S, Cherry JA, Parker BL. 1996. Conceptual Models for the Behavior of Dense Nonaqueous Phase Liquids (DNAPLs) in the Subsurface. In Pankow JF, Cherry JA, eds, Dense Chlorinated Solvents and Other DNAPLs in Groundwater. Waterloo Press, Toronto, Canada, pp 53–88.Google Scholar
  60. Fennell DE, Gossett JM. 1998. Modeling the production of and competition for hydrogen in a dechlorinating culture. Environ Sci Technol 32:2450–2460.Google Scholar
  61. Fennel DE, Carroll AB, Gossett JM, Zinder SH. 2001. Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol 35:1830–1839.Google Scholar
  62. Ferrey ML, Wilkin RT, Ford RG, Wilson JT. 2004. Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. Environ Sci Technol 38:1746–1752.Google Scholar
  63. Fletcher KE, Costanza J, Pennell KD, Löffler FE. 2011. Electron donor availability for microbial reductive processes following thermal treatment. Water Res 45:6625–6636.Google Scholar
  64. Fogel S, Smoler D, Findlay M. 2007. Lessons learned as a result of completing 250 microcosm studies. Proceedings, 9th International In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA, May 7–10.Google Scholar
  65. Fogel S, Findlay M, Folsom S, Kozar M. 2009. The Importance of pH in Reductive Dechlorination of Chlorinated Solvents. In Wickramanayake GB, Rectanus HV, eds. Proceedings, 10th International In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA. May 5–8. Battelle Memorial Institute, Columbus, OH, USA. Paper L-47.Google Scholar
  66. Friis AK, Albrechtsen H-J, Heron G, Bjerg PL. 2005. Redox processes and release of organic matter after thermal treatment of a TCE-contaminated aquifer. Environ Sci Technol 39:5787–5795.Google Scholar
  67. Friis AK, Albrechtsen H-J, Cox E, Bjerg PL. 2006. The need for bioaugmentation after thermal treatment of a TCE-contaminated aquifer: Laboratory experiments. J Contam Hydrol 88: 235–248.Google Scholar
  68. Friis AK, Heimann AC, Jakobsen R, Albrechtsen H-J, Cox E, Bjerg PL. 2007. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Water Res 41:355–364.Google Scholar
  69. Fure AD, Jawitz JW, Annable MD. 2006. DNAPL Source depletion: Linking architecture and flux response. J Contam Hydrol 85:118–140.Google Scholar
  70. Gantzer CJ, Wackett LP. 1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25:715–722.Google Scholar
  71. Gent D, Bricka RM, Truax DD, Zappi ME. 2001. Electrokinetic Movement of Biological Amendments Through Natural Soils to Enhance In Situ Bioremediation. In Leeson A, Peyton BM, Means JL, Magar VS, eds, Bioremediation of Inorganic Compounds. Battelle Press, Columbus, OH, USA, pp 241–248.Google Scholar
  72. GeoSyntec. 2004. Assessing the Feasibility of DNAPL Source Zone Remediation: Review of Case Studies. Contract Report CR 04-002-ENV. Naval Facilities Engineering Services Center, Port Hueneme, CA, USA.Google Scholar
  73. Geosyntec. 2005. A Review of Biofouling Controls for Enhanced In Situ Bioremediation of Groundwater. ESTCP, Arlington, VA, USA. Accessed September 14, 2013.
  74. Geosyntec. 2007. Cost and Performance Report: Demonstration of Bioaugmentation at Kelly AFB, TX, USA. Project ER-199914. Accessed September 14, 2013.
  75. Geosyntec. 2008. Cost and Performance Report: Biodegradation of Dense Non-Aqueous Phase Liquids (DNAPLS) Through Bioaugmentation of Source Areas – Dover National Test Site, Dover, DE, USA. Project ER-200008. Accessed September 14, 2013.
  76. Gerhard JI, Kueper BH. 2003. Influence of constitutive model parameters on the predicted migration of DNAPL in heterogeneous porous media. Water Resour Res 39:1279, doi: 10.1029/2002WR001570.Google Scholar
  77. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappe MS, Short JM, Carrington JC, Mathur EJ. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Sci 309:1242–1245.Google Scholar
  78. Glover KC, Munakata-Marr J, Illangasekare TH. 2007. Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: Experimental evaluation and influence of pool morphology. Environ Sci Technol 41:1384–1389.Google Scholar
  79. Goldstein KJ, Vitolins A, Navon D, Parker BL, Chapman S, Anderson GA. 2004. Characterization and pilot studies of chemical oxidation remediation of fracture shale. Ground Water 14:19–38.Google Scholar
  80. Gossett J. 2010. Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. Environ Sci Technol 44:1405–1411.Google Scholar
  81. Grant GP, Gerhard JI, Kueper BH. 2007. Multidimensional validation of a numerical model for simulating a DNAPL release in heterogeneous porous media. J Contam Hydrol 92:109–128.Google Scholar
  82. Harkness MR, Bracco AA, Brennan MJ Jr, DeWeerd KA, Spivack JL. 1999. Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ Sci Technol 33:1100–1109.Google Scholar
  83. Hartmans S, deBont JAM, Tramper J, Luyben KCAM. 1985. Bacterial degradation of vinyl chloride. Biotechnol Lett 7:383–388.Google Scholar
  84. He J, Ritalahti KM, Aiello MR, Löffler FE. 2003. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69:996–1003.Google Scholar
  85. He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE. 2005. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450.Google Scholar
  86. He J, Holmes VF, Lee PKH, Alvarez-Cohen L. 2007. Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73:2847–2853.Google Scholar
  87. Heimann AC, Friis AK, Jakobsen R. 2005. Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Res 39:3579–3586.Google Scholar
  88. Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC. 2002. Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495.Google Scholar
  89. Henry B. 2010. Biostimulation for Anaerobic Bioremediation of Chlorinated Solvents. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes, Springer, New York, NY, USA, pp 357–423.Google Scholar
  90. Henry BM, Turner AL, Becvar ESK, Haas PE. 2007. Long-term source reduction using neat vegetable oil at CCAFS, Florida. Proceedings, 9th International In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA, May 7–10. Battelle Press, Columbus OH, USA, Paper K-12.Google Scholar
  91. Hiortdahl KM, Borden RC. 2011. Anaerobic bioremediation of DNAPL in lab columns. Bioremediation and Sustainable Environmental Technologies Symposium, Reno, NV, USA.Google Scholar
  92. Holliger C, Schraa G, Stams AJM, Zehnder AJB. 1993. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59:2991–2997.Google Scholar
  93. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJB. 1998. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321.Google Scholar
  94. Holmes VF, He J, Lee PKH, Alvarez-Cohen L. 2006. Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Appl Environ Microbiol 72:5877–5883.Google Scholar
  95. Hood E, Major D, Driedger G. 2007. The effect of concentrated electron donors on the solubility of trichloroethene. Ground Water Monit Remediat 27:93–98.Google Scholar
  96. Hood ED, Major DW, Quinn J, Yoon S, Gavaskar A, Edwards EA. 2008. Demonstration of enhanced bioremediation in a TCE source area at Cape Canaveral Air Force Station, Launch Complex 34. Ground Water Monit Remediat 28:98–107.Google Scholar
  97. Hrapovic L, Sleep BE, Major D, Hood ED. 2005. Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation. Environ Sci Technol 39:2888–2897.Google Scholar
  98. Huang D, Becker JG. 2011. Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations. Environ Sci Technol 45:1093–1099.Google Scholar
  99. Hunkeler D, Meckenstock R Sherwood-Lollar B, Schmidt T, Wilson J. 2008. A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants Using Compound Specific Isotope Analysis (CSIA). EPA/600/R-08/148. USEPA, Washington, DC, USA.Google Scholar
  100. ITRC (Interstate Technology & Regulatory Council). 2005. Overview of In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones. ITRC, Bioremediation of DNAPLs Team, Washington, DC, USA. Accessed September 14, 2013.
  101. ITRC. 2007. In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones: A Review of Case Studies. ITRC, Bioremediation of DNAPLs Team, Washington, DC, USA. Accessed September 14, 2013.
  102. ITRC. 2008. In Situ Bioremediation of Chlorinated Ethene: DNAPL Source Zones. ITRC, Bioremediation of DNAPLs Team, Washington, DC, USA. Accessed September 14, 2013.
  103. ITRC. 2010. Technology Overview: Use and Measurement of Mass Flux and Mass Discharge. ITRC, Washington, DC, USA. Accessed September 14, 2013.
  104. ITRC. 2011. Environmental Molecular Diagnostics Fact Sheets. ITRC, Environmental Molecular Diagnostics Team, Washington, DC, USA. Accessed September 14, 2013.
  105. Johnson P, Dahlen P, Triplett-Kingston J, Foote E, Williams S. 2009. Critical Evaluation of the State-of-the-Art In Situ Thermal Treatment Technologies for DNAPL Source Zone Treatment. ESTCP, Arlington, VA, USA. Project ER-200314. Accessed September 14, 2013.
  106. Jones EH, Reynolds DA, Wood AL, Thomas DG. 2011. Use of electrophoresis for transporting nano-iron in porous media. Ground Water 49:172–183.Google Scholar
  107. Kane A, Vidumsky J, Major DW, Bauer NR. 2005. In-Situ Bioremediation of a Chlorinated Solvent Residual Source in Unconsolidated Sediments and Bedrock Using Bioaugmentation. In Calabrese EJ, Kostecki PT, Dragun J, eds, Contaminated Soils, Sediments and Water: Science in the Real World, Vol 9. Springer, Boston, MA, USA, pp 45–55.Google Scholar
  108. Kavanaugh MC, Rao PSC, Abriola L, Cherry J, Newell C, Sale T, Destouni G, Falta R, Shoemaker S, Siegrist R, Major D, Mercer J, Teusch G, Udell K. 2003. The DNAPL Remediation Challenge: Is There a Case for Source Depletion? EPA/600/R-03/143. USEPA, Washington DC, USA. Accessed September 14, 2013.
  109. Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE. 2004. Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70:6347–6351.Google Scholar
  110. Krembs FJ, Siegrist RL, Crimi ML, Furrer RF, Petri BG. 2010. ISCO for groundwater remediation: Analysis of field applications and performance. Ground Water Monit Remediat 30:42–43.Google Scholar
  111. Krumholtz LR, Sharp R, Fishbain SS. 1996. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol 62:4108–4113.Google Scholar
  112. Kueper BH, Frind EO. 1991. Two-phase flow in heterogeneous porous media 1. Model development. Water Resour Res 27:1049–1057.Google Scholar
  113. Kueper BH, Wealthall GP, Smith JWN, Leharne SA, Lerner DN. 2003. An Illustrated Handbook of DNAPL Transport and Fate in the Subsurface. R&D Publication 133. United Kingdom Environment Agency, Bristol, UK. 67 p.Google Scholar
  114. Lebrón C. 2007. Final Report: Improving Effectiveness of Bioremediation at DNAPL Source Zone Sites Applying Partitioning Electron Donors (PEDs). Project 200716. Accessed September 14, 2013.
  115. Lebrón CA, McHale T, Young R, Williams D, Bogaart MG, Major DW, McMaster ML, Tasker I, Akladiss N. 2007. Pilot-scale evaluation using bioaugmentation to enhance PCE dissolution at Dover AFB national test site. Remediat J 17:5–17.Google Scholar
  116. Lebrón CA, Acheson C, Dennis P, Druar X, Wilkinson J, Ney E, Major D, Petrovskis E, Barros N, Yeager C, Löffler F, Ritalahti K, Hatt J, Edwards E, Duhamel M, Chan W. 2008. Standardized Procedures for Use of Nucleic Acid-based Tools. SERDP Project ER-1561. Naval Facilities Engineering Command, Port Hueneme, CA, USA. 81 p. Accessed September 14, 2013.
  117. Lee W, Batchelor B. 2002. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36:5147–5154.Google Scholar
  118. Lemke LD, Abriola LM, Lang JR. 2004. Influence of hydraulic property correlation on predicted dense nonaqueous phase liquid source zone architecture, mass recovery and contaminant flux. Water Resour Res 40:W12417, doi: 10.1029/2004WR003061.Google Scholar
  119. Li KB, Goovaerts P, Abriola LM. 2007. A geostatistical approach for quantification of contaminant mass discharge uncertainty using multilevel sampler measurements. Water Resour Res 43:W06436, doi: 10.1029/2006WR005427.Google Scholar
  120. Liang X, Dong Y, Kuder T, Krumholz LR, Philp RP, Butler EC. 2009. Distinguishing abiotic and biotic transformation of tetrachloroethylene and trichloroethylene by stable carbon isotope fractionation. Environ Sci Technol 41:7094–7100.Google Scholar
  121. Löffler FE, Sun Q, Li J, Tiedje J. 2000. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374.Google Scholar
  122. Löffler FE, Yan J, Ritalahti K, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder S, Spormann AM. 2013a. Dehalococcoides mccartyi gen. nov., sp. nov., obligate organohalide-respiring anaerobic bacteria, relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidetes classis nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63(Pt 2):625-635. doi:  10.1099/ijs.0.034926-0
  123. Löffler FE, Ritalahti K, Zinder S. 2013b. Dehalococcoides and Reductive Dechlorination of Chlorinated Solvents. In Stroo HF, Leeson A, Ward CH, eds, Bioaugmentation for Groundwater Remediation. Springer, New York, NY, USA, pp 39–88.Google Scholar
  124. Lowe SE, Jain MK, Zeikus JG. 1993. Biology, ecology, and biotechnological applications of anaerobic-bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57:451–509.Google Scholar
  125. Lu X, Wilson JT, Kampbell DH. 2006. Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140.Google Scholar
  126. Lu X, Wilson JT, Kampbell DH. 2009. Comparison of an assay for Dehalococcoides DNA and a microcosm study in predicting reductive dechlorination of chlorinated ethenes in the field. Environ Pollut 157:809–815.Google Scholar
  127. Luitjen MLGC, Smidt H, Boschker HTS, de Vos WM, Schraa G, Stams AJM. 2003. Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53:787–793.Google Scholar
  128. Macbeth TW, Sorenson K. 2008. Final Report: In Situ Bioremediation of Chlorinated Solvent Source Zones With Enhanced Mass Transfer. Prepared for ESTCP, Arlington, VA, USA. Project ER-200218. Accessed September 14, 2013.
  129. Macbeth TW, Nelson L, Rothermel JS, Wymore RA, Sorenson KS. 2006. Evaluation of whey for bioremediation of trichloroethene source zones. Bioremediation J 10:115–128.Google Scholar
  130. Maillard J, Regeard C, Holliger C. 2005. Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ Microbiol 7:107–117.Google Scholar
  131. Maymó-Gatell X, Chien, YT, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Sci 276:1568–1571.Google Scholar
  132. Maymó-Gatell X, Nijenhuis I, Zinder SH. 2001. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environ Sci Technol 35:516–521.Google Scholar
  133. McCarty PL. 1997. Breathing with chlorinated solvents. Sci 276:1521–1522.Google Scholar
  134. McCarty PL, Semprini L. 1994. Ground-water treatment for chlorinated solvents. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 87–116.Google Scholar
  135. McCarty PL, Chu M-Y, Kitanidis P. 2007. Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater. Eur J Soil Biol 43:276–282.Google Scholar
  136. McDade JM, McGuire TM, Newell CJ. 2005. Analysis of DNAPL source-depletion costs at 36 field sites. Remediat J 15:9–18.Google Scholar
  137. McGuire TM, McDade JM, Newell CJ. 2006. Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impact sites. Ground Water Monit Remediat 26:73–84.Google Scholar
  138. McMurdie PJ, Behrens SF, Müller JA, Göke J, Ritalahti KM, Wagner RD, Holmes S, Richardson P, Löffler FE, Spormann AM. 2009. Localized plasticity linked to reductive dehalogenation in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genetics 5:e1000714.Google Scholar
  139. Mercer JW, Cohen RM, Noel MR. 2008. DNAPL Site Characterization Issues at Chlorinated Solvent Sites. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 217–280.Google Scholar
  140. Mohn WW, Tiedje J. 1992. Microbial reductive dehalogenation. Microbiol Mol Biol Rev 56:482–507.Google Scholar
  141. Morrill PL, Sleep BE, Seepersad DJ, McMaster ML, Hood ED, LeBron C, Major DW, Edwards EA, Sherwood-Lollar B. 2009. Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone. J Contam Hydrol 110:60–71.Google Scholar
  142. Mravik SC, Sillan RK, Wood AL, Sewell GW. 2003. Field evaluation of solvent extraction residual biotreatment technology. Environ Sci Technol 37:5040–5049.Google Scholar
  143. Müller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM. 2004. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888.Google Scholar
  144. Munakatta-Marr J, Sorenson KS Jr, Petri BG, Cummings JB. 2011. Principles of Combining ISCO With Other In Situ Remedial Approaches. In Siegrist RL, Crimi M, Simpkin TJ, eds, In Situ Chemical Oxidation for Groundwater Remediation. Springer, New York, NY, USA, pp 285–317.Google Scholar
  145. Mutch RD, Scott JI, Wilson DJ. 1993. Cleanup of fractured rock aquifers: Implications of matrix diffusion. Environ Monit Assess 24:45–70.Google Scholar
  146. NAVFAC, Geosyntec. 2011. DNAPL Tool. Accessed September 14, 2013.
  147. Nielsen RB, Keasling JD. 1999. Reductive dechlorination of chlorinated ethene DNAPLS by a culture enriched from contaminated groundwater. Biotechnol Bioeng 62:160–165.Google Scholar
  148. Newell CJ. 2009. Enhanced Amendment Delivery to Low Permeability Zones for Chlorinated Solvent Source Area Bioremediation. Project ER-200913. Accessed September 14, 2013.
  149. Newell CJ, Rifai HS, Wilson JT, Connor JA, Aziz CA, Suarez MP. 2002. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies. U.S. EPA Ground Water Issue. EPA/540/S-02/500. U.S. EPA National Risk Management Research Laboratory, Cincinnati, OH, USA.Google Scholar
  150. Norris RD, Lageman R, Pool W, van Vulpen M. 1995. In situ electro-bioreclamation in low permeable soils. Proceedings, 3rd International Symposium In Situ and On-Site Bioreclamation. San Diego, CA, USA. April 24–27.Google Scholar
  151. NRC (National Research Council). 2005. Contaminants in the Subsurface: Source Zone Assessment and Remediation. National Academies Press, Washington, DC, USA. 333 p.Google Scholar
  152. O’Hara S, Krug T, Quinn J, Clausen C, Geiger C. 2006. Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediat J 16:32–56.Google Scholar
  153. Parker BL, Gillham RW, Cherry JA. 1994. Diffusive disappearance of immiscible-phase organic liquids in fractured geologic media. Ground Water 32:805–820.Google Scholar
  154. Peterson LN, Sorenson KS, Starr RC. 2000. Field Demonstration Report TAN Final Groundwater Remediation OU 1-07B. DOE/ID-10718. U.S. Department of Energy, Washington, DC, USA.Google Scholar
  155. Philips J, Springael D, Smolders E. 2011. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid. Chemosphere 83:991–996.Google Scholar
  156. Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon W-S, Gavaskar A, Holdsworth T. 2005. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39:1309–1318.Google Scholar
  157. Ramsburg CA, Abriola LM, Pennell KD, Löffler FE, Gamache M, Amos BK, Petrovskis EA. 2004. Stimulated microbial reductive dechlorination following surfactant treatment at the Bachman Road site. Environ Sci Technol 38:5902–5914.Google Scholar
  158. Ramsburg CA, Thornton CE, Christ JA. 2010. Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid. Environ Sci Technol 44:9105–9111.Google Scholar
  159. Reynolds DA, Jones EH, Gillen M, Yusoff I, Thomas DG. 2008. Electrokinetic migration of permanganate through low-permeability media. Ground Water 46:629–637.Google Scholar
  160. Richardson R, Bhupathiraju VK, Song DL, Goulet TA, Alvarez-Cohen L. 2002. Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques. Environ Sci Technol 36:2652–2662.Google Scholar
  161. Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774.Google Scholar
  162. Ritalahti KM, Hatt JK, Lugmayr V, Henn K, Petrovskis EA, Ogles DM, Davis GA, Yeager CM, Lebrón CA, Löffler FE. 2010. Comparing on-site to off-site biomass collection for Dehalococcoides biomarker gene quantification to predict in situ chlorinated ethene detoxification potential. Environ Sci Technol 44:5127–5133.Google Scholar
  163. Robinson C, Barry DA, McCarty PL, Gerhard, JL, Kouznetsova I. 2009. pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Sci Total Environ 407:4560–4573.Google Scholar
  164. Rowlands, D. 2004. Development of Optimal pH for Degradation of Chlorinated Solvents by the KB-1™ Anaerobic Bacterial Culture. PhD Thesis, University of Guelph, Guelph, Ontario, Canada.Google Scholar
  165. Sabalowsky AR, Semprini L. 2010a. Trichloroethene and cis-1,2-dichloroethene concentration-dependent toxicity model simulates anaerobic dechlorination at high concentrations: I. batch-fed reactors. Biotechnol Bioeng 107:529–539.Google Scholar
  166. Sabalowsky AR, Semprini L. 2010b. Trichloroethene and cis-1,2-dichloroethene concentration-dependent toxicity model simulates anaerobic dechlorination at high concentrations: II. continuous flow and attached growth reactors. Biotechnol Bioeng 107:540–549.Google Scholar
  167. Sahl J, Munakata-Marr J. 2006. The effects of in situ chemical oxidation on microbiological processes: A review. Remediat J 16:57–70.Google Scholar
  168. Sahl J, Munakata-Marr J, Crimi M, Siegrist RL. 2007. Coupling permanganate oxidation with microbial dechlorination of tetrachloroethene. Water Environ Res 79:5–12.Google Scholar
  169. Sale TC, McWhorter DB. 2001. Steady-state mass transfer from single component dense non-aqueous phase liquid in uniform flow fields. Water Resour Res 37:393–404.Google Scholar
  170. Sale T, Newell CJ. 2010. Impacts of Source Management on Chlorinated Solvent Plumes. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes, Springer, New York, NY, USA, pp 185–216.Google Scholar
  171. Sale T, Newell C, Stroo H, Hinchee R, Johnson P. 2008. Frequently Asked Questions Regarding Management of Chlorinated Solvents in Soils and Groundwater. ESTCP, Arlington, VA, USA. Accessed September 14, 2013.
  172. Schaefer CE, Condee CW, Vainberg S, Steffan RJ. 2009a. Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: Comparison between batch and column experiments. Chemosphere 75:141–148.Google Scholar
  173. Schaefer CE, Callaghan AV, King JD, McCray JE. 2009b. Dense nonaqueous phase liquid architecture and dissolution in discretely fractured sandstone blocks. Environ Sci Technol 43:1877–1883.Google Scholar
  174. Schaefer CE, Towne RM, Vainberg S, McCray JE, Steffan RJ. 2010. Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks. Environ Sci Technol 44:4958–4964.Google Scholar
  175. Scheutz C, Durant ND, Dennis P, Hansen MH, Jørgensen I T, Jakobsen R, Cox EE, Bjerg PL. 2008. Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environ Sci Technol 42:9302–9309.Google Scholar
  176. Seagren EA, Rittman BE, Valocchi AJ. 1993. Quantitative evaluation of flushing and biodegradation for enhancing in situ dissolution of nonaqueous-phase liquids. J Contam Hydrol 12:103–132.Google Scholar
  177. Seagren EA, Rittman BE, Valocchi AJ. 1994. Quantitative evaluation of the enhancement of NAPL-pool dissolution by flushing and biodegradation. Environ Sci Technol 28:833–839.Google Scholar
  178. SERDP (Strategic Environmental Research and Development Program). 2006. Expert Panel Workshop on Research and Development Needs for the Environmental Remediation Application of Molecular Biological Tools. SERDP, Arlington, VA, USA. Available at: Accessed September 14, 2013.
  179. Sherwood-Lollar B, Slater GF, Sleep B, Witt M, Kleck GM, Harkness M, Spivack J. 2001. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at Area 6, Dover Air Force Base. Environ Sci Technol 35:261–269.Google Scholar
  180. Simkins S, Alexander M. 1984. Models for mineralization kinetics with the variables of substrate concentration and population density. Appl Environ Microbiol 47:1299–1306.Google Scholar
  181. Simpkin TJ, Norris RD. 2010. Engineering and Implementation Challenges for Chlorinated Solvent Remediation. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 109–143.Google Scholar
  182. Slater GF, Sherwood-Lollar B, Sleep BE, Edwards EA. 2001. Variability in carbon isotopic fractionation during biodegradation of chlorinated ethenes: Implications for field applications. Environ Sci Technol 35:901–907.Google Scholar
  183. Sleep BE, Brown AJ, Sherwood-Lollar B. 2005. Long-term tetrachloroethene degradation sustained by endogenous cell decay. J Environ Eng Sci 4:11–17.Google Scholar
  184. Sleep BE, Seepersad DJ, Mo K, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, Lebrón C, Sherwood-Lollar B, Major DW, Edwards EA. 2006. Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40:3623–3633.Google Scholar
  185. Song DL, Conrad ME, Sorenson KS, Alvarez-Cohen L. 2002. Stable carbon isotope fractionation during enhanced in situ bioremediation of trichloroethene. Environ Sci Technol 36:2262–2268.Google Scholar
  186. Steimle R. 2002. The state of the practice: Characterizing and remediating contaminated groundwater at fractured rock sites. Remediat J 12:23–33.Google Scholar
  187. Stroo HF. 2010. Bioremediation of Chlorinated Solvent Plumes. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 309–324.Google Scholar
  188. Stroo HF, Norris RD. 2009. Alternatives for In Situ Bioremediation of Perchlorate. In Stroo HF, Ward CH, eds, In Situ Bioremediation of Perchlorate in Groundwater. Springer, New York, NY, USA, pp 79–90.Google Scholar
  189. Stroo HF, Ward CH (eds), 2010. In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA. 725 p.Google Scholar
  190. Stroo HF, Unger M, Ward CH, Kavanaugh MC, Vogel C, Leeson A, Marqusee JA, Smith BP. 2003. Remediating chlorinated solvent source zones. Environ Sci Technol 37:224A–230A.Google Scholar
  191. Stroo HF, Major DW, Gossett JM. 2010. Bioaugmentation for Anaerobic Bioremediation of Chlorinated Solvents. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 425–454.Google Scholar
  192. Stroo HF, Lesson A, Marqusee JA, Johnson PC, Ward CH, Kavanaugh MC, Sale TC, Newell CJ, Pennell KD, Lebron CA, Unger M. 2012. Chlorinated ethene source remediation: Lessons learned. Environ Sci Technol 46:6438–6447.Google Scholar
  193. Stroo HF, Major DW, Steffan RJ, Koenigsberg SS, Ward CH. 2013. Bioaugmentation with Dehalococcoides: A Decision Guide. In Stroo HF, Leeson A, Ward CH, eds, Bioaugmentation for Groundwater Remediation. Springer, NewYork, NY, USA, pp 117–140.Google Scholar
  194. Suarez MP, Rifai HS. 1999. Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. Bioremediation J 3:337–362.Google Scholar
  195. Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, Löffler FE. 2003. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69: 2964–2974.Google Scholar
  196. Sung Y, Ritalahti KM, Apkarian RP, Löffler F. 2006. Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 72:1980–1987.Google Scholar
  197. Suthersan SS, Lutes CC, Palmer PL, Lenzo F, Payne FC, Liles DS, Burdick J. 2002. Technical Protocol for Using Soluble Carbohydrates to Enhance Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons. Project ER-199920. Prepared for ESTCP, Arlington, VA, USA. Accessed September 14, 2013.
  198. Suthersan S, Horst J, Nelson D, Schnobrich M. 2011. Insights from years of performance that are shaping injection-based remediation systems. Remediat J 21:9–25.Google Scholar
  199. Sutton NB, Grotenhuis JTC, Langenhoff AAM, Rijnaarts HHM. 2010. Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies. J Soils Sediments 11:129–140.Google Scholar
  200. Thullner M, Zeyer J, Kinzelbach W. 2002. Influence of microbial growth on hydraulic properties of pore networks. Transp Porous Media 49:99–122.Google Scholar
  201. Vainberg S, Steffan RJ, Rogers R, Ladaa T, Pohlmann D, Leigh D. 2006. Production and application of large-scale cultures for bioaugmentation. Proceedings, 5th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA. May 22–25. Paper A-50.Google Scholar
  202. Van der Zaan B, Hannes F, Hoekstra N, Rijnaarts H, de Vos WM, Smidt H, Gerritse J. 2010. Correlation of Dehalococcoides 16S rRNA and chloroethene reductive dehalogenase genes to different geochemical conditions in chloroethene-contaminated groundwater. Appl Environ Microbiol 76:843–850.Google Scholar
  203. Vandevivere P, Baveye P. 1992. Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns. Soil Sci Soc Am J 56:1–13.Google Scholar
  204. Vandevivere P, Baveye P, de Lozada DS, DeLeo P. 1995. Microbial clogging of saturated soils and aquifer materials: Evaluation of mathematical models. Water Resour Res 31:2173–2180.Google Scholar
  205. Vogel TM, McCarty PL. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49:1080–1083.Google Scholar
  206. Vogel TM, Criddle CS, McCarty PL. 1987. Transformation of halogenated aliphatic compounds. Environ Sci Technol 21:722–736.Google Scholar
  207. West MR. 2009. Mathematical Modeling of DNAPL Source Zone Remediation. PhD Thesis. Queen’s University, Kingston, Ontario, Canada, 431 p.Google Scholar
  208. West MR, Grant GP, Gerhard JI, Kueper BH. 2008. The influence of precipitate formation on the chemical oxidation of TCE DNAPL with potassium permanganate. Adv Water Resour 31:324–338.Google Scholar
  209. West MR, Kueper BH. 2010. Plume detachment and recession times in fractured rock. Ground Water 48:416–426.Google Scholar
  210. West MR, Kueper BH. 2012. Numerical Simulation of DNAPL Source Zone Remediation with In Situ Chemical Oxidation (ISCO). Adv Water Resour 44:126–139.Google Scholar
  211. Wilkin RT, McNeil MS, Adair CJ, Wilson JT. 2001. Field measurement of dissolved oxygen: A comparison of methods. Ground Water Monit Remediat 21:124–132.Google Scholar
  212. Williams S. 2003. Sequestration of a DNAPL Source with Vegetable Oil. Project ER-200319. Accessed March 22, 2011.
  213. Wilson JT. 2010. Monitored natural attenuation of chlorinated solvent plumes. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 325–355.Google Scholar
  214. Wilson JT, Wilson BH. 1985. Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49:242–243.Google Scholar
  215. Wood AL, Annable MD, Jawitz JW, Enfield CG, Falta RW, Goltz MN, Rao PSC. 2004. Impact of DNAPL source treatment on contaminant mass flux. Proceedings, 4th International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA, USA, May 24–27). Battelle Press, Columbus, OH, USA. Paper 1D-07.Google Scholar
  216. Wright DJ, Birak PS, Pedit JA, Miller CT. 2010. Effectiveness of source-zone remediation of DNAPL-contaminated subsurface systems. J Environ Eng 136:452–465.Google Scholar
  217. Wu X, Gent DB, Davis JL, Alshawabkeh AN. 2012a. Lactate injection by electric currents for bioremediation of tetrachloroethylene in clay. Electrochem Acta 86:157–163.Google Scholar
  218. Wu MZ, Reynolds DA, Fourie A, Prommer H, Thomas DG. 2012b. Electrokinetic in situ oxidation remediation: Assessment of parameter sensitivities and the influence of aquifer heterogeneity on remediation efficiency. J Contam Hydrol 136–137:72–85.Google Scholar
  219. Yang Y, McCarty PL. 2000. Biologically enhanced dissolution of tetrachloroethene DNAPL. Environ Sci Technol 34:2979–2984.Google Scholar
  220. Yang Y, McCarty PL. 2002. Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution. Environ Sci Technol 36:3400–3404.Google Scholar
  221. Yu S, Dolan ME, Semprini L. 2005. Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures. Environ Sci Technol 39:195–205.Google Scholar
  222. Zhong L, Oostrom M, Wietsma TW, Covert MA. 2008. Enhanced remedial amendment delivery through fluid viscosity modifications: Experiments and numerical simulations. J Contam Hydrol 101:29–41.Google Scholar
  223. Zhuang P, Pavlostathis SG. 1995. Effect of temperature, pH and electron-donor on the microbial reductive dechlorination of chloroalkenes. Chemosphere 31:3537–3548.Google Scholar
  224. Zysset A, Stauffer F, Dracos T. 1994. Modeling of reactive groundwater transport governed by biodegradation. Water Resour Res 30:2423–2434.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hans F. Stroo
    • 1
  • Michael R. West
    • 2
  • Bernard H. Kueper
    • 3
  • Robert C. Borden
    • 4
  • David W. Major
    • 5
  • C. Herb Ward
    • 6
  1. 1.Stroo Consulting, LLCAshlandUSA
  2. 2.B. Kueper & Associates, LtdKingstonCanada
  3. 3.Queen’s UniversityKingstonCanada
  4. 4.North Carolina State UniversityRaleighUSA
  5. 5.Geosyntec Consultants, Inc.GuelphCanada
  6. 6.Rice UniversityHoustonUSA

Personalised recommendations